Climate change and adaptive land management in southern Africa

Assessments Changes Challenges and Solutions

Product of the first research portfolio of SASSCAL 2012–2018

Sponsored by the Federal Ministry of Education and Research

Southern African Science Service Centre for Climate Change and Adaptive Land Management
© University of Hamburg 2018
All rights reserved

Klaus Hess Publishers
Göttingen & Windhoek
www.k-hess-verlag.de

ISBN: 978-3-933117-95-3 (Germany), 978-99916-57-43-1 (Namibia)

Language editing: Will Simonson (Cambridge), and Proofreading Pal
Translation of abstracts to Portuguese: Ana Filipa Guerra Silva Gomes da Piedade
Page desing & layout: Marit Arnold, Klaus A. Hess, Ria Henning-Lohmann
Cover photographs:
 front: Thunderstorm approaching a village on the Angolan Central Plateau (Rasmus Revermann)
 back: Fire in the miombo woodlands, Zambia (David Parduhn)
Cover Design: Ria Henning-Lohmann

ISSN 1613-9801

Printed in Germany

Suggestion for citations:
Volume:

Articles (example):

Corrections brought to our attention will be published at the following location:
http://www.biodiversity-plants.de/biodivers_ecol/biodivers_ecol.php
Biodiversity & Ecology

Journal of the Division Biodiversity, Evolution and Ecology of Plants, Institute for Plant Science and Microbiology, University of Hamburg

Volume 6:

Climate change and adaptive land management in southern Africa

Assessments, changes, challenges, and solutions

Edited by

Rasmus Revermann¹, Kristin M. Krewenka¹, Ute Schmiedel¹, Jane M. Olwoch², Jörg Helmschrot²³, Norbert Jürgens¹

¹ Institute for Plant Science and Microbiology, University of Hamburg
² Southern African Science Service Centre for Climate Change and Adaptive Land Management
³ Department of Soil Science, Faculty of AgriSciences, Stellenbosch University

Hamburg 2018
Please cite the article as follows:

A frequent issue at the NMSs was the entry of on-paper climate data. CLIMSOFT provides some templates for entering data directly into the databases, but these templates often do not satisfy the requirements of meteorological services. Therefore, an additional open-source tool was designed to facilitate data entry in the partner countries. The app provides users with a web-based interface to enter the data in the same way that they are structured on the on-paper form (Fig. 1). Users can also customize the structure of the forms and create their own templates. It also includes a quality control of absolute limits that checks the meteorological data as they are entered and alerts users if an entered value is implausible.

Similarly to the ACD-App, the keyEntry-App has been developed using Shiny so that it can easily be run on any PC with a web browser. It has also been hosted on GitHub for download and further development: https://github.com/sasscal-dwd-apps/keyEntry-App. A detailed manual on how to install the app and how to use it can be found here: https://sasscal-dwd-apps.github.io/keyEntry-App/en/documentation.html

Figure 1: (top) Original form and (bottom) digital form of ZMD. The digital form maintains the same structure as the on-paper form to facilitate data entry. It also provides embedded quality control, flagging the values entered that are outside a given threshold.