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Robust methods for detecting a small
island effect

Jürgen Dengler*

INTRODUCTION

The term small island effect (SIE) describes situations when

species richness (S) on (true or habitat) islands below a certain

threshold area (breakpoint) varies independently of island size

(A) (Lomolino, 2000; Triantis et al., 2006). While it appears

that the term SIE was first applied by Woodroffe (1986), the

idea itself dates back to Niering (1963), MacArthur & Wilson

(1967) and Whitehead & Jones (1969). Following the Millen-

nium Guest Editorial by Lomolino (2000) in the Journal of

Biogeography, SIE analyses became more common, most of

them supporting a widespread occurrence of SIEs (see the

Review section). Meanwhile, the SIE found its way into

textbooks (Lomolino et al., 2006; Whittaker & Fernández-

Palacios, 2007), and Whittaker & Fernández-Palacios (2007,

p. 96) conclude that the SIE ‘is comparatively common in

island datasets’.

While the SIE is becoming more and more part of the

theoretical framework of island biogeography and biodiversity

research, there are still serious doubts whether it exists at all
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ABSTRACT

Aim The small island effect (SIE), i.e. the hypothesis that species richness below a

certain threshold area varies independently of island size, has become a widely

accepted part of the theory of island biogeography. However, there are doubts

whether the findings of SIEs were based on appropriate methods. The aim of this

study was thus to provide a statistically sound methodology for the detection of

SIEs and to show this by re-analysing data in which an SIE has recently been

claimed (Sfenthourakis & Triantis, 2009, Diversity and Distributions, 15, 131–140).

Location Ninety islands of the Aegean Sea (Greece).

Methods First, I reviewed publications on SIEs and evaluated their methodology.

Then, I fitted different species–area models to the published data of area (A) and

species richness (S) of terrestrial isopods (Oniscidea), with log A as predictor and

both S (logarithm function) and log S (power function) as response variables:

(i) linear; (ii) quadratic; (iii) cubic; (iv) breakpoint with zero slope to the left (SIE

model); (v) breakpoint with zero slope to the right; (vi) two-slope model. I used

non-linear regression with R2
adj., AICc and BIC as goodness-of-fit measures.

Results Many different methods have been applied for detecting SIEs, all of them

with serious shortcomings. Contrary to the claim of the original study, no SIE

occurs in this particular dataset as the two-slope variants performed better than

the SIE variants for both the logarithm and power functions.

Main conclusions For the unambiguous detection of SIEs, one needs to

(i) include islands with no species; (ii) compare all relevant models; and (iii)

account for different model complexities. As none of the reviewed SIE studies met

all these criteria, their findings are dubious and SIEs may be less common than

reported. Thus, conservation-related predictions based on the assumption of SIEs

may be unreliable.
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(Williamson et al., 2001; Burns et al., 2009; Dengler, 2009).

These concerns are prompted by the inadequate ways in which

authors of SIE studies have substantiated their claim for its

existence (see Dengler, 2009): partly, they did it only graph-

ically, partly they used regression analyses but did not account

for the higher model complexity of models with a breakpoint.

In the first part of this contribution, I provide a comprehensive

review of methods applied for SIE detection and evaluate their

appropriateness from a statistical point of view.

A recent publication claiming to have found an SIE is

Sfenthourakis & Triantis (2009) in this journal. As this article

also provides the original data, I take this opportunity to re-

analyse these with more appropriate statistical methods for

addressing the question of SIEs. Supported by the empirical

findings, I then discuss what might be the appropriate criteria

for the existence of an SIE, whether they are met in this

particular case and whether they are likely to be met at all.

My considerations are embedded in the wider context of

multimodel inference in studies on species–area relationships

(SARs), of which small islands with a potential SIE are only

one special case. As both SIE studies (e.g. Sfenthourakis &

Triantis, 2009) and species–area analyses in general (e.g.

Veech, 2000; Fahrig, 2003; Desmet & Cowling, 2004) are

widely used to draw conclusions for conservation, I finally

will address the consequences of my findings in the conser-

vation context.

APPROACHES TO DETERMINE SMALL ISLAND EFFECTS

A query in the Web of Science (accessed on 2009-10-09)

revealed 18 studies in international journals that used the term

SIE either in the title or in the topic, most of them being quite

recent (Woodroffe, 1986; Heatwole, 1991; Morrison, 1997;

Kelt, 2000; Lomolino & Weiser, 2001; Barrett et al., 2003;

Triantis et al., 2003, 2006, 2008; Russell et al., 2004; Gentile &

Argano, 2005; Panitsa et al., 2006; Ackerman et al., 2007;

Hannus & von Numers, 2008; Kotze, 2008; Morrison & Spiller,

2008; Burns et al., 2009; Sfenthourakis & Triantis, 2009). Of

these, Triantis et al. (2003) and Kotze (2008) are reviews or

conceptual studies without data analyses of their own, while

Russell et al. (2004) uses the term in the abstract but does not

actually deal with this topic. Table 1 provides an overview of

the methods used and their major shortcomings for the

remaining 15 studies and for two further relevant articles

mentioned in the review of Triantis et al. (2006), i.e. Niering

(1963) and Lomolino (2000).

A wide array of different methods has been applied for the

detection of SIEs (Table 1). Individual studies often used more

than one method, and different methods applied to the same

dataset typically yielded inconsistent results on the existence

and extent of an SIE. Most importantly, the authors of all of

the SIE studies I reviewed reached conclusions based on

methods that are not sufficient for accurate detection. My

points of criticism are briefly mentioned in the column

‘Methodological shortcomings’ of Table 1, and – where

necessary – further explained later.

The most frequent problem in SIE studies is that in

comparing models with different numbers of fitted parameters,

authors did not account for different model complexity

(Table 1). The SIE models reviewed have one to three

additional parameters compared to the respective model

without SIE (Table 1). In such cases, it is inadmissible to use

the uncorrected R2 value as a criterion for selecting the best

model (Loehle, 1990; Quinn & Keough, 2002; McGill, 2003;

Johnson & Omland, 2004). Instead, other criteria are to be

used that penalize for the extra parameters, e.g. R2
adj., Akaike

information criterion (AIC), AIC for small n (AICc), or

Bayesian information criterion (BIC) (Quinn & Keough, 2002;

Johnson & Omland, 2004). Recent statistical literature sees the

information criteria, AIC/AICc and BIC, as the best solutions

for the selection among multiple possible models (Mac Nally,

2000; Burnham & Anderson, 2002; Johnson & Omland, 2004;

Link & Barker, 2006). Quinn & Keough (2002) and Link &

Barker (2006) favour BIC because AIC tends to favour complex

models and thus is not sufficiently parsimonious, while Kuha

(2004) suggests that AIC and BIC be used jointly. By contrast,

Burnham & Anderson (2002) see AIC/AICc as the superior

approach for theoretical considerations and based on extensive

simulations. Preferences of BIC over AIC appear to be at least

partly based on the erroneous application of AIC instead of

AICc when the ratio of observations to estimated parameters

(n/K) was below 40 (Burnham & Anderson, 2002). Only

Morrison & Spiller (2008) and Burns et al. (2009) used AIC/

AICc as criterion in SIE studies. However, the first authors

incorrectly assumed only one extra parameter for their SIE

model instead of two (T and z2, see Table 1), and the second

authors used AIC despite of n/K ratios of only 5.4 and 16.2.

Lomolino & Weiser (2001) found SIEs to be much more

frequent and stronger for logarithmic than for power models

(see also Hannus & von Numers, 2008; Morrison & Spiller,

2008). This means that probably in many cases the normal

power function would have been the best model, and the SIE

variant of the logarithm function was only preferred over the

normal logarithm function because it is more similar to

the power function (i.e. in semi-log representation, the slope of

the power function is increasing with area). Even if the ‘true’

relationship is not a power function, a logarithmic model

cannot possibly retain its linearity in semilog space towards the

smallest areas because it then necessarily would predict

negative species richness values (Dengler, 2009), which are

impossible. Thus, if a logarithm function is applied and

sufficiently small islands are included, necessarily a ‘SIE’ will be

detected. However, this is not a real pattern but a mathematical

artefact because of an inappropriate model.

A further, widely neglected problem occurs when islands

with no species are excluded from the analysis. Researchers

may be prompted to do so for two reasons. First, they may

consider unoccupied islands uninteresting. Secondly, they may

omit such islands as these cause ‘trouble’ when fitting a power

law in its linearized form because log (0) is undefined. From a

statistical perspective, islands with no species must not be

excluded in SAR studies (Williams, 1996; Dengler, 2009)

How to detect a small island effect?
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because towards the far-left, the shape of the species–area curve

is mostly determined by the successively increasing fraction of

islands without any species. The exclusion of islands with no

species that fall within the pre-set size range of a study thus

likely leads to the erroneous detection of an SIE. Estimating the

extent of this problem is difficult as the method sections of

articles are usually not explicit about this aspect of sampling.

For example, Morrison (1997) surveyed 133 islands occupied

by plants and 49 unvegetated islands, but only the first appear

in his analyses of the SARs (his Figures 3 and 4). Such biased

sampling has likely occurred in many cases where there are

islands with one species but no islands with no species in the

dataset. This applies to 41 of 102 datasets analysed by

Lomolino & Weiser (2001) and many datasets in other studies

(Lomolino, 2000; Barrett et al., 2003; Triantis et al., 2006;

Burns et al., 2009).

Burns et al. (2009) recently proposed that the logarithmic

transformation of the axes (used to allow the application of

linearized versions of the logarithm or power function) might

cause the detection of an SIE where there is none. They tried to

demonstrate this claim with a simulated example of a linear

relationship of the form S = A with ‘an even scatter about the

best fit line’. While for areas larger than 2 units, their islands

actually had a mean richness of S (i) = i, the mean values for

the two smallest island sizes were S (1) = 2 and S (2) = 2.5.

Consequently, Burns et al. (2009) found a flatter slope for

these, but this does not support their claim of a mathematical

artefact.

Finally, the different methods for SIE detection are based

on four deviating concepts of SIEs (Table 1). The classic

concept, defining an SIE (SIE sensu stricto) as a situation

where species richness varies independently of area below a

certain threshold (MacArthur & Wilson, 1967; Lomolino,

2000; Triantis et al., 2006), forms the basis of methods 1, 2,

3 and 7. By contrast, methods 4 and 9 test whether the SAR

slope for small islands is different (flatter) but not neces-

sarily zero (SIE sensu lato). Method 6 tries to test only the

direct effect of area (‘cryptic SIE’; for further discussion, see

‘The Cryptic SIE Remains Cryptic’ below). Yet another

hypothesis is tested with method 8 (Burns et al., 2009) that

compares the SAR observed with one predicted under

certain null model assumptions. The authors would accept

an SIE when the species richness pattern was less predictable

for smaller sized islands than for larger sized islands. The

problem with this approach is that we are far from a

consensus about the most appropriate null model and each

different null model would yield different results. Moreover,

the null model preferred by Burns et al. (2009) is based on

abundance information (i.e. number of individuals), which is

not available in most SIE studies and which cannot be

obtained at all for certain organisms, such as clonal plants.

While it may be useful to apply the deviating SIE concepts

(i.e. SIE sensu lato, cryptic SIE, null model approach) under

certain circumstances, one should be aware that this means

testing hypotheses that do not directly relate to the SIE sensu

stricto.

RE-ANALYSIS OF THE DATA OF

SFENTHOURAKIS & TRIANTIS (2009)

Methods

The data taken from Sfenthourakis & Triantis (2009, their

Table 1) consist of species richness counts of terrestrial isopods

(Oniscidea; ranging from 1–34 species) for 90 Aegean islands,

sized 0.0023–8261 km2. I conducted regression analyses for a

wide range of different variants of the power function (fitted in

log S-space) and logarithm function (fitted in S-space) (for

details, see Dengler, 2009). I used power and logarithm

functions as the ‘basic’ functions because the majority of SIE

publications did the same. These two functions usually fit SARs

well (see Dengler, 2009, and references cited therein), and they

allow the easy creation of variants that incorporate the SIE and

similar effects. The selection of variants of these two basic

functions aimed to reflect the basic idea of the SIE, i.e. that

area becomes irrelevant or less relevant for areas of a certain

size. This change in relevance of area can be modelled as a

sharp change at a certain point (log A = T) (see equation 4–6)

or as a gradual transition (equation 2 and 3). When there is a

single breakpoint T, there are three possibilities: zero slope of

the SAR below T (i.e. classical SIE; equation 4), zero slope of

the SAR above T (equation 5) or different slopes of the SAR

below and above T (equation 6). Accordingly, in the case of the

power model, I fitted the following curve shapes to a log–

log representation of the area–richness data: linear (equation

1), quadratic (equation 2), cubic (equation 3), linear with zero

slope below the breakpoint (‘left-horizontal’; equation 4),

linear with zero slope above the breakpoint (‘right-horizontal’;

equation 5) and linear with two different slopes (‘two-slope’;

equation 6).

log S ¼ c þ z1 log A ð1Þ

log S ¼ c þ z1 log Aþ z2 log Að Þ2 ð2Þ

log S ¼ c þ z1 log Aþ z2 log Að Þ2þz3 log Að Þ3 ð3Þ

log S ¼ c þ log A>Tð Þz1 log A� Tð Þ ð4Þ

log S ¼ c þ log A � Tð Þz1 log Aþ log A>Tð Þz1 T ð5Þ

log S ¼ c þ log A � Tð Þz1 log A

þ log A>Tð Þ z1 log T þ z2 log A� Tð Þ½ �
ð6Þ

In these equations, S stands for species richness, A for

standardized area, while c (intercept), zi (slopes) and T

(breakpoint) are fitted parameters. The logical expressions in

round brackets return 1 if they are true and 0 if they are false.

For the equivalent variants of the logarithm function, the

same curve types were fitted to a semilog representation of the

data, i.e. with S instead of log S as the dependent variable (i.e.

equations 1–6 with log S replaced by S). In addition, the

normal variant of the power function was fitted in S-space (see

Dengler, 2009), while in several trials to fit the normal variant

How to detect a small island effect?
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of the logarithm function analogously in log S-space, iterations

did not converge.

The regression analyses were carried out with the non-linear

regression module of statistica 8.0 (Statsoft, Inc., 2008). I

used the default settings of the program (loss func-

tion = (OBS-PRED)2; estimation method = quasi-Newton;

convergence criterion = 0.0001; step-width for all parame-

ters = 0.5; starting values for all parameters = 0.1), unless the

iterative process did not converge. In these cases, I altered the

starting values until the programme found a minimum. For

each model, I calculated the predicted values of S for all

islands. These were used to determine R2 and R2
adj. (Quinn &

Keough, 2002) as well as AICc and BIC (least squares case; see

Burnham & Anderson, 2002) of each of the models and both in

S- and log S-space. For the model selection, I finally calculated

the difference in AICc (DAICc,i) and Akaike weights (wi) for

each model i within the set of competing models (Burnham &

Anderson, 2002), as well as the corresponding values for BIC

(DBICi, Pr{gi}). Akaike weights are the normalized likelihood

values across all compared models so that they sum up to 1

(Johnson & Omland, 2004). They can be interpreted as ‘the

probability that model i is the best model for the observed

data, given the candidate set of models’ (Johnson & Omland,

2004).

Results

In S-space, the four-parameter model ‘two-slope logarithm

function’ yielded the highest explained variance (R2) and

remained to be the best among the 13 compared models when

accounting for different model complexities by means of R2
adj.,

AICc or BIC (Table 2, see Fig. 1). Similarly, in log S-space, the

four-parameter model ‘two-slope power function’ performed

best according to all four criteria (Table 2). Both models

estimated the slopes of the SARs to be less steep for the smaller

islands than for the larger islands (Table 2), but still signifi-

cantly different from zero (P = 0.002 for the two-slope

logarithm function in S-space and P = 0.004 for the two-slope

power function in log S-space).

In S-space, the cubic power function performed only slightly

worse than the best model and still better than the third-

ranked model, the left-horizontal logarithm function (i.e. the

classic SIE model) (Table 2). According to Akaike weights (wi),

the chance that the SIE model was the best among the tested

models was only 8.6% and the evidence ratio of the two-

slope model over the classical SIE model was 5.1. When only

the SIE model and the normal logarithmic model were

compared, the SIE model was indeed much better with

DAICc = 68.46 (see Table 2 and Fig. 1). However, the normal

power functions, irrespective for which space they were fitted,

were also much better than the logarithm function with DAICc

of 45.44 and 36.97 (see Table 2 and Fig. 1).

In log S-space (Table 2), the cubic power function was

ranked second according to R2, R2
adj. and AICc, while for BIC,

the normal power (fitted for log S) was second-best. In the

direct comparison of normal and left-horizontal power

functions, the latter model (SIE model) was marginally better

according to R2
adj. but worse according to AICc and BIC.

Interestingly, not only the left-horizontal model but also the

right-horizontal model (i.e. no increase in species richness

above a certain island size) achieved a higher R2 than the

normal power function.

Among those models that assume a breakpoint, the position

of the breakpoint along the x-axis varied widely (Table 2).

While the power SIE model had the breakpoint at x = )1.758

(i.e. 0.017 km2), the logarithmic SIE model had its breakpoint

at x = )0.057 (i.e. 0.877 km2), thus involving four or 43

islands. The breakpoints for the two-slope models also had

different positions, namely 0.600 km2 (39 islands) for the

power version and 2.239 km2 for the logarithmic version (54

islands). The right-horizontal models did not bring any

improvement for the logarithmic version and involved only a

single island (Crete) in the horizontal part of the curve for the

power version.

Discussion

Considering the overall shape of the species–area curve, the

logarithm function provided a much worse fit than the power

function (see Table 2 and Fig. 1). This finding is in line with

many other studies that report the prevalence of power

functions over logarithm functions for SAR at any spatial scale

(see reviews/meta-analyses by Connor & McCoy, 1979;

Rosenzweig, 1995; Dengler, 2009). When the ‘true’ relationship

is a power function, the SIE version of the logarithm function

will necessarily be superior to the normal logarithm function,

as it approximates the concave upward shape of a power

function in semilog representation. The fact that quadratic and

cubic variants of the logarithm and power functions performed

moderately well should not be overinterpreted, because these

variants – while convenient to simulate gradual transitions of

slopes – cannot be used for a general description of a SAR as

they necessarily predict decreasing species richness for some

spatial scales. This, however, is theoretically impossible for a

statistical population (see Dengler, 2009; Tjørve, 2009).

Sfenthourakis & Triantis (2009) claimed that they found an

SIE up to 1 km2 (i.e. 45 islands) in the dataset with the method

of Lomolino & Weiser (2001) for the logarithm (‘semilog’)

function (No. 2 in Table 1) and up to 4.558 km2 (i.e. 58

islands) with the method of Triantis et al. (2006, i.e. no. 6 in

Table 1). By contrast, they did not detect any SIE with the

method of Gentile & Argano (2005; i.e. no. 5 in Table 1). The

first value (1 km2) is very close to the result determined in this

study (0.877 km2), and the difference is probably only because

of the fact that the method of Lomolino & Weiser (2001)

determines the breakpoint by successively increasing T with an

increment of 0.1 and then recalculating R2 until a maximum is

achieved. By contrast, I used non-linear regression that

achieves the optimal solution in an iterative process that

allows T to take any value.

Whilst this agrees with Sfenthourakis & Triantis (2009) in

rating the left-horizontal logarithm function (SIE model) as

J. Dengler

260 Diversity and Distributions, 16, 256–266, ª 2010 Blackwell Publishing Ltd



T
a
b

le
2

R
es

u
lt

s
o

f
th

e
n

o
n

-l
in

ea
r

re
gr

es
si

o
n

an
al

ys
es

o
f

sp
ec

ie
s–

ar
ea

d
at

a
o

f
is

o
p

o
d

s
o

n
90

A
eg

ea
n

is
la

n
d

s.
T

h
e

b
es

t
m

o
d

el
s

ac
co

rd
in

g
to

th
e

d
if

fe
re

n
t

cr
it

er
ia

ar
e

m
ar

ke
d

in
b

o
ld

.
N

o
te

th
at

c

re
fe

rs
to

sp
ec

ie
s

ri
ch

n
es

s
fo

r
m

o
d

el
s

fi
tt

ed
fo

r
S

an
d

to
lo

g 1
0

o
f

sp
ec

ie
s

ri
ch

n
es

s
in

th
e

ca
se

o
f

m
o

d
el

s
fi

tt
ed

fo
r

lo
g

S.
T

is
lo

g 1
0

o
f

th
e

ar
ea

in
km

2
o

f
th

e
b

re
ak

p
o

in
t.

N
o

te
th

at
th

e
n

u
m

b
er

o
f

es
ti

m
at

ed
p

ar
am

et
er

s
(k

)
u

se
d

fo
r

th
e

ca
lc

u
la

ti
o

n
o

f
th

e
in

fo
rm

at
io

n
cr

it
er

ia
,i

s
p

+
1

(i
.e

.t
h

e
m

o
d

el
p

ar
am

et
er

s
+

th
e

va
ri

an
ce

o
f

th
e

re
si

d
u

al
s;

se
e

B
u

rn
h

am
&

A
n

d
er

so
n

,2
00

2)
.T

h
e

ab
b

re
vi

at
io

n

n
.a

.
(n

o
t

ap
p

li
ca

b
le

)
d

en
o

te
s

va
lu

es
th

at
w

er
e

n
o

t
d

efi
n

ed
(i

.e
.

lo
ga

ri
th

m
s

o
f

n
eg

at
iv

e
va

lu
es

).

F
u

n
ct

io
n

L
o

ga
ri

th
m

L
o

ga
ri

th
m

,

q
u

ad
ra

ti
c

L
o

ga
ri

th
m

,

cu
b

ic

L
o

ga
ri

th
m

,

le
ft

-h
o

ri
zo

n
ta

l

L
o

ga
ri

th
m

,

ri
gh

t-
h

o
ri

zo
n

ta
l

L
o

ga
ri

th
m

,

tw
o

-s
lo

p
e

P
o

w
er

P
o

w
er

P
o

w
er

,

q
u

ad
ra

ti
c

P
o

w
er

,

cu
b

ic

P
o

w
er

,

le
ft

-h
o

ri
zo

n
ta

l

P
o

w
er

,

ri
gh

t-
h

o
ri

zo
n

ta
l

P
o

w
er

,

tw
o

-s
lo

p
e

S-
sp

ac
e

S
S

S
S

S
S

S
lo

g
S

lo
g

S
lo

g
S

lo
g

S
lo

g
S

lo
g

S

N
o

.
o

f
fi

tt
ed

p
ar

am
et

er
s

p
2

3
4

3
3

3
2

2
3

4
3

3
4

P
ar

am
et

er
es

ti
m

at
es

c
8.

72
1

6.
43

1
6.

33
3

4.
04

7
8.

72
1

5.
60

5
7.

20
3

0.
80

0
0.

77
0

0.
75

7
0.

38
9

0.
80

1
0.

70
5

z 1
5.

01
5

4.
07

7
4.

31
3

7.
82

6
5.

01
5

1.
40

9
0.

20
2

0.
22

3
0.

21
1

0.
24

3
0.

23
0

0.
22

6
0.

12
9

z 2
1.

18
5

1.
27

1
8.

48
5

0.
01

5
0.

02
7

0.
26

8

z 3
)

0.
06

4
)

0.
00

9

T
)

0.
05

7
>

3.
92

0
0.

35
0

)
1.

75
8

3.
22

9
)

0.
22

5

M
o

d
el

p
er

fo
rm

an
ce

in
S-

sp
ac

e

R
2

0.
81

06
0.

91
12

0.
91

24
0.

91
36

0.
81

06
0.

91
88

0.
88

57
0.

87
44

0.
71

72
0.

91
86

0.
87

00
0.

91
11

0.
79

68

R
2

ad
j.

0.
80

85
0.

90
92

0.
90

93
0.

91
16

0.
80

63
0.

91
59

0.
88

44
0.

87
30

0.
71

07
0.

91
58

0.
86

70
0.

90
91

0.
78

97

D i
(A

IC
c)

71
.7

3
5.

73
6.

80
3.

27
73

.9
1

0.
00

26
.2

9
34

.7
6

11
0.

00
0.

16
40

.0
4

5.
86

82
.4

9

D i
(B

IC
)

67
.1

5
3.

46
6.

80
1.

01
71

.6
5

0.
00

21
.7

2
30

.1
8

10
7.

74
0.

16
37

.7
8

3.
59

82
.4

9

w
i

(A
IC

c)
0.

00
00

0.
02

52
0.

01
48

0.
08

61
0.

00
00

0.
44

20
0.

00
00

0.
00

00
0.

00
00

0.
40

82
0.

00
00

0.
02

36
0.

00
00

P
r{

g i
}

(B
IC

)
0.

00
00

0.
06

09
0.

01
15

0.
20

80
0.

00
00

0.
34

44
0.

00
00

0.
00

00
0.

00
00

0.
31

81
0.

00
00

0.
05

71
0.

00
00

M
o

d
el

p
er

fo
rm

an
ce

in
lo

g
S-

sp
ac

e

R
2

n
.a

.
0.

78
78

0.
77

82
0.

79
14

n
.a

.
0.

80
25

0.
76

10
0.

78
96

0.
79

80
0.

80
82

0.
79

44
0.

79
15

0.
81

02

R
2

ad
j.

n
.a

.
0.

78
29

0.
77

04
0.

78
66

n
.a

.
0.

79
56

0.
75

83
0.

78
72

0.
79

34
0.

80
15

0.
78

97
0.

78
67

0.
80

36

D i
(A

IC
c)

n
.a

.
7.

81
14

.0
4

6.
27

n
.a

.
3.

58
16

.3
3

4.
85

3.
37

0.
94

4.
96

6.
22

0.
00

D i
(B

IC
)

n
.a

.
5.

55
14

.0
4

4.
01

n
.a

.
3.

58
11

.7
6

0.
27

1.
10

0.
94

2.
70

3.
96

0.
00

w
i

(A
IC

c)
n

.a
.

0.
00

89
0.

00
04

0.
01

93
n

.a
.

0.
07

41
0.

00
01

0.
03

92
0.

08
22

0.
27

66
0.

03
71

0.
01

97
0.

44
24

P
r{

g i
}

(B
IC

)
n

.a
.

0.
01

62
0.

00
02

0.
03

52
n

.a
.

0.
04

36
0.

00
07

0.
22

71
0.

15
00

0.
16

28
0.

06
77

0.
03

60
0.

26
05

A
IC

,
A

ka
ik

e
in

fo
rm

at
io

n
cr

it
er

io
n

;
B

IC
,

B
ay

es
ia

n
in

fo
rm

at
io

n
cr

it
er

io
n

.

How to detect a small island effect?

Diversity and Distributions, 16, 256–266, ª 2010 Blackwell Publishing Ltd 261



more suitable than the normal logarithm function, the support

for the SIE function vanished when taking a wider range of

possible functions into account. In particular, the functions

with two different slopes got much higher support than either

of the corresponding SIE functions in the respective S-spaces.

Their slopes in the left part were significantly different from

zero – thus rejecting the existence of an SIE sensu stricto in this

dataset.

By contrast, an SIE sensu lato, i.e. a flatter slope of the SAR

for small islands, was confirmed in both S-spaces. However,

the thresholds for the SIEs sensu lato (0.017 and 0.877 km2)

strongly deviated from the thresholds determined by Sfentho-

urakis & Triantis (2009) with their methods. While it would be

worthwhile to find plausible explanations for the decreased

SAR slope of small islands, this is beyond the scope of this

article, and I am not in the possession of the relevant

information to test competing hypotheses that could lead to

such an SAR. The underlying reasons could be those brought

forward for a general SIE (see MacArthur & Wilson, 1967;

Triantis et al., 2006) but as well be completely idiosyncratic

(e.g. systematic differences in the environmental conditions of

the small vs. the large islands by chance).

In their second approach, Sfenthourakis & Triantis (2009)

determined the SIE with what they call ‘path analysis’ (Triantis

et al., 2006). Here, an SIE is stated, when below a certain

threshold, the direct effect of area on S (i.e. its partial

regression coefficient) becomes zero or negative after elimi-

nating the effect of habitat diversity. Apart from also not

accounting for the higher complexity in the SIE model (see

Table 1), this approach has two drawbacks. First, it defines the

SIE differently from Lomolino (2000), who simply speak of an

SIE, when species richness below a threshold is ‘independent of

island area’ as it only takes the direct effects of area into

consideration but excludes (or tries to exclude) the effects of

area mitigated through higher habitat diversity on larger

islands. By contrast, the classical definition of Lomolino

(2000), on which the method of Lomolino & Weiser (2001)

is based, includes both the direct and indirect effects of area.

Consequently, both methods yielded different results. Second,

Sfenthourakis & Triantis (2009) used the simple number of

habitat types, roughly grouped into 16 categories, mostly

according to vegetation structure and land use (e.g. salt

marshes or olive groves), as their measure of habitat diversity.

These habitat definitions are idiosyncratic, generally not

transferable among island datasets and constructed from an

anthropogenic view. Moreover, this approach does not

account for the proportional areas of the habitats on the

islands. Nor does it reflect the varying degrees of similarity

between the habitat types (e.g. are groves of olives and fruit-

bearing trees more similar to each other than either of these

two habitat types to salt marshes?). Thus, it is questionable as

to the meaning of an SIE and of its upper limit L if habitats are

defined and used in such a way.

DOES THE SMALL ISLAND EFFECT EXIST AT ALL?

In this article, I demonstrated that in one particular dataset

(Sfenthourakis & Triantis, 2009) no SIE in the sense of

Lomolino (2000) and Lomolino & Weiser (2001) occurs,

contrary to the authors’ conclusions. While it was not my

intention to re-analyse the data of all studies that reported an

SIE (see Review section), a closer look at the most compre-

hensive meta-analysis on this topic so far (Lomolino & Weiser,

2001) may help to elucidate the question raised in the section

heading. These authors reported the existence of SIEs for a

large proportion of 102 island datasets, based on often

marginal increases in the uncorrected R2-values of the SIE

models compared to the non-SIE models. On average, the

authors found an increase in R2 by only 0.075 for the

logarithmic models and 0.028 for power models. These low

values suggest that in many cases, the authors’ conclusion

might not withstand a re-analysis based on information

criteria, particularly as their datasets typically consist of much

fewer islands (mean sample size: 26.8) than that of the Aegean

isopods. Further, as demonstrated in the Review section, all

previous SIE studies included at least one methodological

drawback that biases the outcomes of SIE studies towards the

detection of SIEs.

THE CRYPTIC SMALL ISLAND EFFECT REMAINS CRYPTIC

Is then the other approach to detect an SIE proposed by

Triantis et al. (2006) and applied as one alternative by

Sfenthourakis & Triantis (2009) more promising? As the

authors admit, this approach uses a deviating definition of SIE

from Lomolino (2000; see Discussion section above), and thus

they speak of a ‘cryptic SIE’. Their aim was to ‘extract’ from the

overall SAR the one part that is caused by area directly (‘area

per se’) but to omit those parts that are caused indirectly via

increased habitat diversity and then to test whether the

remaining ‘pure’ SAR shows a left-horizontal shape. It has

frequently been acknowledged that the existence of SARs is a

result of two main factors, namely area per se (i.e. larger areas

usually are inhabited by more individuals and these by chance
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four different models fitted to these data in S-space with non-

linear regression. The Di (AICc) values are given in brackets

(the lowest value denotes the ‘best’ model).
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tend to comprise more different species) and habitat diversity

(i.e. larger areas usually encompass a larger variety of different

habitat conditions because of the typical distance decay in

ecological similarity, thus allowing species of different niches

to co-exist) (e.g. Nilsson et al., 1988; Ricklefs & Lovette, 1999;

Gaston & Blackburn, 2000; Triantis et al., 2003; Whittaker &

Fernández-Palacios, 2007). To disentangle these two processes

by including a measure of habitat diversity into the SAR

models (Nilsson et al., 1988; Ricklefs & Lovette, 1999; Triantis

et al., 2003) seems hardly plausible since there are infinite

possibilities of how to quantify habitat diversity – and each will

result in different outcomes. Accordingly, if the intention is to

test for a ‘cryptic SIE’, apart from solving the other method-

ological shortcomings of the method of Triantis et al. (2006)

(see Table 1), one should apply a uniform habitat definition

for all island datasets to be compared. To find such a general,

globally applicable and, at the same time, ecologically mean-

ingful measure of habitat diversity will certainly not be an easy

task.

I propose another approach for incorporating habitat

diversity into SIE/SAR analyses. Since the correct methods of

fitting SARs are very different from those of interpreting the

root causes of aspects of any given SAR, these tasks should be

separate and sequential. Finding the best model for an SAR

may then be followed by, for example, examining how slopes

(z-values) vary with spatial scale and elucidating the under-

lying causes of this variation (Turner & Tjørve, 2005; Dengler,

2009). Likewise, the deviations of empirical data from fitted

curves (i.e. the residuals) can be explained by differences in

present and historic environmental conditions. Here, habitat

diversity comes into play as the residuals of the overall SAR can

be regressed against the residuals of the habitat diversity–area

relationship. The variance explained by the latter predictor in

comparison to other environmental parameters will charac-

terize the relative importance of habitat diversity in a specific

case. That way, it is also possible to test which of the many

possible measures of habitat diversity results in the highest

explained variance and thus is most meaningful in a specific

case.

HOW TO DETECT A SMALL ISLAND EFFECT?

Based on the arguments presented, four criteria seem indis-

pensable for the unambiguous demonstration of SIEs:

1 If islands with no species fall within the geographical and

range-size limits of the study, they must be included in the

analyses.

2 The comparison should include a wide range of different

models (at least one variant without an SIE, one with an SIE

sensu stricto and one with an SIE sensu lato).

3 The model selection needs to be carried out in the same

S-space for all models.

4 The applied goodness-of-fit measure should adequately

account for varying model complexity (i.e. AICc or BIC).

The logarithm function (‘semilog model’), despite its wide

application in SIE studies (see Table 1), is generally inappro-

priate for richness data close to zero, which usually occur

when small islands are analysed (see Review section). Instead,

I suggest using variants of the power function, such as

normal power function (no SIE), left-horizontal power

function (SIE sensu stricto) and two-slope power function

(SIE sensu lato). Actually, the inclusion of the last model is a

way to implement the proposal in Dengler (2009) to test for

the scale-dependence of z. On the one hand, it does not

assume a breakpoint at all nor a certain position of it; on the

other hand, it also allows not only for SIEs sensu lato but also

for decreasing slopes with increasing area as they are to be

expected for very large islands (see Preston, 1962; Dengler,

2009). Such a continuous two-slope model (four parameters)

has previously been applied in SIE studies by Morrison &

Spiller (2008) and Burns et al. (2009), while Gentile &

Argano (2005) proposed a discontinuous two-slope model

(No. 4 in Table 1), which appears basically inappropriate for

modelling macroscopic processes in nature and is even more

complex (five parameters).

This case study deviates from all previous SIE studies in

applying non-linear regression (see Quinn & Keough, 2002)

for fitting the models. This approach proved to be particularly

powerful as it allows the modelling and comparison of

practically any type of functional relationship directly (see

previous applications to SARs by Dengler & Boch, 2008;

Dengler, 2009). Further, it enables the direct modelling of

power laws and their variants, i.e. with S instead of log S as

response variable (Quinn & Keough, 2002, p. 150). This

approach can be superior to the linearized version because

(i) the goodness-of-fit can directly be compared with other

functions fitted in S-space; (ii) areas with S = 0 can be

included easily without applying a ‘log (S + 1)’-transformation

(e.g. Barrett et al., 2003; Triantis et al., 2006), which has been

criticized much (e.g. Wilson, 2007). Moreover, unlike the

‘manual’ approach of Lomolino & Weiser (2001) to find the

optimal breakpoint by applying two separate linear regressions

repeatedly, the non-linear regression modules of statistical

packages (such as statistica; StatSoft, Inc., 2008) do this

automatically and by varying all parameters with infinitesimal

step-width when approaching the optimum.

One further problem potentially involved in the analysis of

island SARs but not addressed here (or in any other SAR study

known to me) is spatial autocorrelation. In other fields of

macroecology, spatial autocorrelation has recently received

increasing attention, as it could lead to biased estimates of

goodness-of-fit measures and parameters (Dormann et al.,

2007; Kühn, 2007). Future studies should thus test the

relevance of spatial autocorrelation for island SARs and how

best to correct for it within the framework of non-linear

regression modelling.

Finally, I wish to highlight the difference between unequiv-

ocally finding an SIE (sensu stricto or sensu lato) in a particular

dataset and promoting SIEs as a general biogeographical

phenomenon with a common cause. Unlike nested-plot SARs,

species richness data of islands are also influenced by many

other environmental (e.g. altitude, distance to mainland) and

How to detect a small island effect?
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historic factors (e.g. island age), which usually cause a much

higher scatter of the data points around the regression line (see

MacArthur & Wilson, 1967; Whittaker & Fernández-Palacios,

2007; Dengler, 2009). Thus, if for certain small areas, species

richness apparently is not dependent or less dependent on area,

this may well be caused by unequal distribution of other island

characteristics between size classes (e.g. the combination of

smaller temperate islands with larger arctic islands). Such a

flattening of the SAR ‘by chance’ could happen in all size

classes, not only for small islands. Only if it should occur more

frequently for the smallest sized islands, would there be a

justification to assume a causal relationship between small size

of islands and flatness of the corresponding SAR segment.

CONCLUSIONS AND OUTLOOK

As all previous studies that claimed SIEs violated at least one of

the methodological pre-requisites presented in this article, it is

presently an open question how frequent SIEs are or whether

they occur at all. However, the impression raised in recent

literature that SIEs are ubiquitous (Lomolino & Weiser, 2001;

Whittaker & Fernández-Palacios, 2007) is probably not true,

given the arguments provided here.

Thus, it would be highly desirable in the future to analyse a

comprehensive number of island datasets with the methods

proposed in this article. Instead of solely focussing on SIEs

sensu stricto, I suggest that neither a constant slope across all

spatial scales nor a zero slope towards the left-hand end should

be assumed a priori, but it should be tested whether and where

the slope changes (see Dengler, 2009). If in a meta-analysis,

other SARs also frequently exhibit shallower, yet non-

zero slopes towards smaller island sizes (as in the example,

re-analysed here), one may consider calling this phenomenon

an SIE sensu lato – as contrasted to the SIE sensu stricto of

Lomolino (2000) – and to seek for common underlying

reasons.

The results of this study suggest that it might be pre-mature

to apply those ideas in conservation that other authors

developed under the assumption of SIEs being widespread.

Sfenthourakis & Triantis (2009), for example, concluded that

the focus of nature conservation should be on the protection of

islands ‘near the SIE threshold’. They justified this with the

finding that their SIE threshold coincided with the point below

which the proportion of habitat specialists (which are partic-

ularly susceptible to environmental change) rapidly decreased.

However, this coincidence does not hold for the thresholds of

the SIEs sensu lato determined in this article, which removes any

support for the priority setting proposed by Sfenthourakis &

Triantis (2009). Further, if SIEs are not as widespread as others

propose, then it may be dangerous to assume further reductions

in already small habitat fragments will not further reduce

species richness. Finally, from a more general perspective, the

present study suggests that one should be very cautious in

applying SARs for the prediction of effects of habitat loss,

hotspot determination or optimal reserve planning (e.g. Veech,

2000; Lomolino, 2001; Fahrig, 2003; Desmet & Cowling, 2004;

Ulrich & Buszko, 2004; Whittaker & Fernández-Palacios, 2007;

Guilhaumon et al., 2008). In such analyses, typically only one

or at best few, mostly simple SAR models have been included

and often the same methodological shortcomings were involved

as demonstrated here for SIEs. Thus, predictions and sugges-

tions of such studies may be unreliable. For example, Guilhau-

mon et al. (2008) demonstrated that a model selection

procedure similar to the one applied here (i.e. comparison of

many different models; AIC as goodness-of-fit measure) led to a

selection of diversity hotspots dramatically different from those

previously determined with ‘traditional’ approaches.
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