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Abstract: Already semi-arid, due to the eff ects of climate change, Botswana has been experiencing unreliable water sup-
plies over the past several years. However, the limited climate information over diff erent catchments makes engaging in an 
informed decision-making process diffi  cult. The Notwane catchment at Gaborone dam, located in the headstreams of the 
Notwane River in eastern Botswana, is a major water supply for the country. However, due to the sparse network of hydro-
meteorological measurement stations, no reliable predictions can be made and, thus, creating a reliable runoff  estimation 
for the reservoir has been diffi  cult. Through SASSCAL, an experimental set of automated weather stations has been set up 
in the Notwane catchment. Preliminary analysis using artifi cial neural networks (ANNs) to examine the predictive capac-
ity of the monitored variables (from July 15, 2016, through June 25, 2017: 346 days) on precipitation at four individual 
stations reveals that the gathered hydro-meteorological data may be useful given an increase in record length coupled with 
consideration of diff erent modeling approaches to validate inherent relationships with precipitation. Study also revealed that 
simulated precipitation for the area exhibits similar mean and variability to the observations despite poor simulations for 
extreme precipitation events. These results give insight into prospects for improved hydrologic and water resource modeling 
over the catchment.

Resumo: O Botswana semi-árido tem sofrido com um fornecimento incerto de água ao longo dos anos, devido aos impactos 
das alterações climáticas. Mesmo as informações climáticas escassas/limitadas das diferentes bacias hidrográfi cas difi cultam 
o processo de tomada de uma decisão informada. A bacia hidrográfi ca de Notwane na barragem de Gaborone, localizada na 
nascente do Rio Notwane no Este do Botswana, é uma importante fonte de abastecimento de água no país. Porém, devido 
à esparsa rede de estações de medição hidrometeorológica, não foi possível fazer previsões fi áveis e, por isso, foi difícil 
estimar de forma segura a escorrência para o reservatório. Através do SASSCAL, foi criado um conjunto experimental de 
Estações Meteorológicas Automáticas na bacia de Notwane. Uma análise preliminar usando Redes Neuronais Artifi ciais 
(ANNs) na capacidade preditiva de variáveis monitorizadas (de 15/07/2016 a 25/06/2017: 346 dias) na precipitação em qua-
tro estações individuais revela que os dados hidrometeorológicos poderão ser possivelmente úteis com o aumento do número 
de registos, juntamente com a consideração de diferentes abordagens de modelação para validações de relações inerentes 
com a precipitação. É também evidenciado que a precipitação simulada exibe uma média e variabilidade semelhantes às 
observadas, apesar das escassas simulações para eventos de precipitação extremos. Estes resultados dão-nos uma expectativa 
para uma melhor modelação dos recursos hídricos e hidrológicos na bacia hidrográfi ca.
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Introduction

Gaborone, the capital city of Botswana, 
is the country’s major population cluster, 
with accelerated rural-urban migrations 
to the city leading to increased water 
demand. As a result, the Notwane catch-

ment, which is the main source of wa-
ter for the city, has required inter-basin 
transfer of water from the relatively wet 
northeastern part of Botswana. However, 
transporting water over 500 km to sup-
plement the Gaborone reservoir comes 
at great costs. Despite this, hydro-mete-

orological data availability regarding the 
catchment is almost nonexistent (Kena-
batho et al., 2017). The very sparse sta-
tions over the catchment monitor only 
precipitation and temperature, and leave 
considerable data gaps. With the installa-
tion of automated weather stations (AWS) 
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made possible through the Southern Afri-
can Science Service Centre for Climate 
Change and Adaptive Land Management 
(SASSCAL) project, eff orts towards im-
proving hydro-meteorological monitor-
ing to aid hydrologic modeling and river 
basin and water resource management 
could be realised. The weather stations 
are already operational and have allevi-
ated the challenge of working with only 
limited, poor-quality data. 

Artifi cial neural networks (ANNs), a 
computational tool based on the neural 
structure of brain systems, have been 
adopted for the study. ANNs have gained 
prominence in data science, being par-
ticularly useful in modelling the com-
plex interactions between rainfall and 
runoff  in fl ow regime studies. These are 
uniquely powerful tools in applications 
where formal analysis would be diffi  cult 
or impossible, such as pattern recognition 
and nonlinear system identifi cation and 
control (Furundzic, 1997; Anmala et al., 
2000; Uvo et al., 2000; Sivakumar et al., 
2002). ANNs were also found to be better 

than using the multiplicative autoregres-
sive integrated moving average (MA-
RIMA) when forecasting rainfall and 
temperature over Botswana (Kenabatho 
et al., 2015). Non-linearity is a prime 
characteristic of issues related to the at-
mospheric and hydrologic sciences and 
thus, ANNs are ideally suited for such 
problems because, like their biological 
counterparts, a neural network can learn, 
and therefore can be trained to fi nd so-
lutions, recognise patterns, classify data, 
and even forecast future events (Hsu 
et al., 2002; Parida & Moalafhi, 2008; 
Kenabatho et al., 2015). The feedforward 
multi-layer architectures of ANNs have 
been shown to have computational supe-
riority in comparison to other paradigms 
(Adeloye & Munari, 2006; Parida et al., 
2006; Kenabatho et al., 2015).

The main aim of this paper is to test 
the utility of the hydro-meteorological 
variables from the newly developed 
SASSCAL AWS in modelling rainfall 
by way of establishing and using the re-
lationships between the measured inde-

pendent/predictor variables (i.e,. temper-
ature and humidity) and the predictand/
target variable (rainfall). This will assist 
in improved simulation of rainfall events 
at these sites, especially during instances 
when rainfall data become unavailable 
as a result of malfunctions by rainfall 
recorders, among other situations. The 
model results will also give an indication 
of the data’s potential utility for simu-
lating rainfall events, urgently needed 
for future water resources planning. It 
is anticipated that future operation and 
maintenance of the AWS, supplemented 
with streamfl ow gauging, will help to 
improve hydrologic and water resources 
modelling and, therefore, improve water 
resources management over the highly 
urbanised Notwane catchment of Bot-
swana. The catchment, with improved 
monitoring, will also play an important 
role as an experimental basin for teaching 
regarding hydrology and water resources 
management, especially at the University 
of Botswana.

Figure 1: Locations of the automated weather stations (AWS) over Notwane catchment in Botswana.
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Methods

Study site
The catchment is located upstream of 
the Gaborone dam within the south-
east district, and within close proximity 
to  Gaborone, the capital of Botswana 
(Fig. 1). Its spatial extent is longitude 
25.5°E to 26.0°E, and latitude 24.5°S to 
25.5°S. Due to its proximity to the capi-
tal and the associated ‘pull factors of mo-
dernity’, there have been rapid land use 
changes and increased demand for water 
with implications for runoff  generation 
and water supply, respectively. In 1991, 
census data showed that about 50% of 
Botswana’s population lived within a 
100 km radius of the capital, Gaborone 
(CSO, 2001). Inhabitants of Gaborone 
and its immediate surroundings within 
the Notwane catchment have become 
more affl  uent, which, coupled with the 
boom in population over the catchment, 
has led to an ever-increasing per-capita 
water demand (Moalafhi et al., 2012).

The Notwane, Taung, Metsemas-
waane, and Nywane rivers drain the area. 
These rivers are intermittent due to the 
semi-arid conditions of the region. The 
catchment experiences annual rainfall 
averaging 500 mm, with high mean an-
nual temperatures averaging 25°C that 
lead to high evaporation rates. Rainfall, 
as is the case for the rest of the country, is 
seasonal. Rains mostly start around No-
vember and end in April. 

Data
Six variables are considered at daily 
time steps from 15 July 2016 to 25 June 
2017 (346 days) from four out of a total 
of fi ve AWS over Notwane catchment in 
Botswana. Only four stations were cho-

sen based on data availability. The vari-
ables are precipitation (mm); tempera-
ture (maximum, average, and minimum 
in °C); relative humidity (%); and global 
radiation (mJ/km2). Currently, there is 
no river discharge monitoring over the 
catchment; thus, precipitation is being 
used as a key hydro-meteorological vari-
able with implications for runoff  genera-
tion at the atmosphere-biosphere inter-
face. Precipitation is therefore being used 
as a proxy for river discharge; it is also 
used for demonstration purposes regard-
ing the predictive capacity of the AWS 
variables among themselves. For this 
reason, the measured rainfall values (de-
pendent variable) together with tempera-
ture (minimum, average, and maximum), 
relative humidity, and global radiation 
(independent/predictor variables) are 
used to develop an ANN model structure 
to simulate rainfall for the catchment. 
The model is run for each of the four 
AWS stations—Ranaka, Mogobane, Mo-
lapowabojang, and Lotlkhakane East—
to assess the predictability of rainfall at 
locations of the newly established AWS.

Back-propagation artifi cial neu-
ral network (BPANN) modelling
The dependent variables are used as the 
inputs to the ANN model architecture, 
while precipitation is used as the output 
(target variable) being simulated. A mul-
ti-layer feedforward back-propagation 
ANN is adopted. 

The back-propagation training algo-
rithm begins by setting a set of random 
weights; during training, weights are itera-
tively modifi ed on the basis of the diff er-
ences between the training output and the 
desired output. To facilitate this, a rule or 
function g(x) together with an initial value 

P0 is set for computing successive terms. 
A sequence of values {Pk} is then obtained 
using the iterative rule Pk+1 = g(Pk). In this 
case, an ANN is presented with inputs 
(here, fi ve independent hydro-meteoro-
logical variables) and  the target variable 
to be reproduced (precipitation in this 
case). The network is then trained to learn 
the relationships between the input vari-
ables and the target variable, with the ul-
timate aim of reproducing the target vari-
able (precipitation) based on the learned 
relationships. The structure of the ANN 
topology adopted in this study is shown in 
Figure 2; it consists of fi ve input variables 
(predictors), 25 neurons for processing the 
information, and one output neuron for the 
target precipitation (predictant). 

The Levenberg–Marquardt (L-M) al-
gorithm, which is commonly used for 
back-propagation algorithm training 
(Hagan & Menhaj, 1994; Samani et al., 
2007), is adopted in this study. Early 
stopping is implemented by dividing 
data randomly into three subsets: train-
ing, validation and testing (Adeloye & 
Munari, 2006). Selecting the three sub-
sets randomly helps accommodate a rea-
sonable range of extreme events, which 
helps to make good predictions (Minns & 
Hall, 2004; Thirumalaiah & Deo, 1998). 
The training set is used for computing 
the gradient and updating the network 
weights and biases, in which the error 
on the validation set is monitored during 
the training process. When the validation 
error increases for some specifi ed and/
or default number of iterations, training 
is stopped and the weights and biases at 
the minimum of the validation error are 
returned. The model is then ready to be 
tested using the remaining dataset. The 
log-sigmoidal is used for the hidden layer 
neurons and the linear transfer function is 
used for the output layer neuron. 

For model performance evaluation, the 
closeness of fi t of the simulated precipita-
tion to the observed precipitation is assessed 
through Pearson correlation coeffi  cient (r) 
and mean squared error (MSE). The Pear-
son correlation coeffi  cient (r-value) evalu-
ates the goodness of fi t by performing linear 
regression between the predicted and target 
precipitation, while mean squared error is 
the average sum of squares of the diff erence 
between predictions and targets.

Figure 2: The ANN structure showing the average optimum network architecture that was 
adopted with fi ve (5) input layers and twenty-fi ve (25) hidden layer neurons (where a hidden 
layer neuron is a neuron whose output is connected to the inputs of other neurons and is 
therefore not visible as a network output; W and b represent weights and activity patterns, 
respectively, assigned to the independent variables).



Bංඈൽංඏൾඋඌංඍඒ  Eർඈඅඈඒ 6    2018 49

C
lim

at
e

Results 

For each station (Fig. 3), four plots are 
given for model performance through cor-
relation coeffi  cient of the predicted pre-
cipitation and the observed precipitation 
during training, validation, and testing and 
when all the three subsets are combined 
together. The individual plots are labeled 

‘Training’, ‘Validation’, ‘Test’, and ‘All’, 
showing blue, green, red, and grey best 
linear fi t lines, respectively. The dotted 
lines show how the best-fi t lines would 
appear for correlation coeffi  cients of 1. 

Each plot shows the observed precipi-
tation as the target (‘Target’ or ‘T’) on 
the x-axis and the predicted precipitation 
(‘Output’ or ‘Y’) on the y-axis. The label 

of the y-axis shows the equation of the 
best linear fi t relating the predicted pre-
cipitation (Output) and the observed pre-
cipitation (Target). The predictions show 
correlation coeffi  cients well over 0.5 at all 
the stations. The highest correlation (0.85) 
was achieved at Lotlhakane East and the 
lowest (0.63) at Mogobane, considering 
the three subsets combined (Tab. 1). 
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Figure 3: Correlation coeffi  cients of precipitation simulations with observations for (a) Ranaka; (b) Mogobane; (c) Molapowabojang; and (d) 
Lotlhakane East.

a b

c d

Table 1: Summary performance of precipitation simulations at the individual stations over the catchment. r= correlation coeffi  cient, 
rcomb. = r for combined data set; MSE = root mean square error (mm).
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Mean squared error (MSE), based on 
the validation component, showed that 
the best predictions were obtained at 
Ranaka station, while Mogobane dis-
played the worst performance (Tab. 1). 
An example of performance using MSE 
is shown in Figure 4, taken from Ranaka 
station, which shows performance during 
training, validation, and testing before the 
model convergence. The minimisation of 
error during the model run is shown for 
the three subsets of ‘Training’, ‘Valida-
tion’, and ‘Testing’. These are shown in 
blue, green, and red, respectively. The 
minimum validation error during the 
model run was achieved after 13 epochs 
(iterations) with MSE of 13.5, as shown 
by Figure 4. Using Ranaka station as 
an example, low and high precipitation 
events are simulated relatively poorly 
(Fig. 5). Here, the predicted precipitation 
is shown in red while the observed pre-
cipitation is shown in blue.

Discussion 

The hydro-meteorological variables did 
not predict precipitation very well at the 
individual stations (Tab. 1). In particular, 
extreme precipitation events (e.g., very 
low and very high amounts of rainfall) 
were predicted poorly. This poor perfor-
mance might be a result of limitations of 
the model itself, and possibly due to the 
short length of data records (less than one 
year). As can be seen from the correlation 
plots (Fig. 3), there is a possibility that 
the network architecture is not learning 
the relationships suffi  ciently, as is espe-
cially visible with its failure to simulate 
extreme precipitation events well (Fig. 
5). The model also demonstrates some 
challenges in diff erentiating between 
rain and no rain as shown in Figure 5. 
For most zero-rainfall events, the model 
predicted at least some rainfall. Despite 
these complications, training, valida-

tion, and testing runs converged closely 
as shown in Figure 5, where there are no 
noticeable improvements across the three 
data divisions in minimisation of mean 
squared error beyond 13 iterations. 

There is another variation of the com-
monly used BPANN, the nonlinear au-
toregressive network with exogenous 
inputs (NARX), which appears to be 
gaining popularity in modelling process-
es related to climate sciences, including 
in semi-arid environments. Predictions 
made over longer time frequencies like 
months and the addition of more exog-
enous variables of precipitation with con-
sideration of lag times have been found to 
signifi cantly improve precipitation pre-
dictions using the NARX (Abarhouei and 
Hosseini, 2016). NARX is an important 
class of discrete-time nonlinear systems 
which predicts a current value of a time 
series based on current and past values 
of the exogenous series (Safavieh et al., 
2007). Byakatonda et al. (2016) used the 
NARX to forecast dryness severity over 
the iconic Okavango Delta in Botswana 
with impressive model performance. 
Thus, this ANN variant confi guration 
could be considered in the future. 

Some correlations between the predict-
ed and observed precipitation are below 
0.60 in certain instances. These correla-
tions were, however, found to be statisti-
cally signifi cant, as they are greater than 
the p-critical values at 0.05 signifi cance 
level. Simulations at Molapowabojang 
station are almost joint second best with 
those at Ranaka station in terms of repro-
ducing temporal correlations between 
predicted and observed precipitation. 
Reproduction of precipitation mean via 
the simulations at Mogobane station is 
slightly worse than at the rest of the sta-
tions, with mean squared error of 28.26. 
All the stations are within the infl uence 
of the easterlies, and this could partly ex-
plain the similarities in performance of 
the model across the stations. Notably, 
rankings of performance of the model 
at the individual stations diff er between 
MSE and temporal correlation. It is thus 
important to always use both mean and 
variability performance measures in 
evaluating simulations. In this regard, 
recommendations can be made on suit-
ability of simulations for both mean and 
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Figure 5: Observed and simulated precipitation at Ranaka station showing deteriorating 
performance especially for low precipitation events. Blue = observed precipitation; 
red = predicted precipitation.
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variability individually and collectively 
(Moalafhi et al., 2016). 

Inclusion of other independent predic-
tors like El Niño Southern Oscillations 
(ENSO), and reanalysis precipitation and 
temperature data may possibly improve 
simulation of extreme events (Kenabatho 
et al., 2012). It would also be interesting 
to determine how much of total variation 
in precipitation each individual hydro-
meteorological predictor variable con-
tributes. Through principal component 
analysis, it would be important to remove 
redundant input variables for improved 
effi  ciency if more exogenous variables 
with some delayed times are to be con-
sidered.

Conclusion

The modelling exercise revealed that 
the chosen modeling framework using 
ANNs was suitable for this catchment. 
However, precipitation is not simulated 
very well at each individual station. Pre-
dicted precipitation was found to exhibit 
similar mean and variability with the ob-
servations. However, stations for which 
precipitation variability was simulated 
best do not necessarily show the best 
precipitation mean simulations, empha-
sising the need to use both mean and 
variability performance measures in as-
sessing simulations. Simulations tend to 
deteriorate towards low and high precipi-
tation events. During the refi nement of 
this work, other model algorithms will 
be tested.

These results give some insight into the 
challenges of short time series and limited 
numbers of predictor variables, as well as 
illustrating the need for further refl ection 
on which model algorithm is best suited 
to the situation being evaluated. Further-
more, exogenous variables like ENSO, 
reanalysis temperature, and precipitation 
should be incorporated to improve the 
simulations. With improvements, AWS 
data could be used to simulate future 
rainfall, assisting in cases where meas-
urements may not be available, as is com-
mon in monitoring networks. Ultimately, 
this will support hydrological modeling 
applications and water resource manage-
ment over the catchment.
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