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(Taubenböck et al., 2012) as one exam-
ple, concentrate more and more people 
and assets in often hazard-prone areas. 
However, monitoring the components of 
risk (Birkmann, 2006), is often limited 
by temporal and spatial data gaps.

In the past decades, space-borne re-
mote sensing technologies along with 
geographic information systems (GIS) 
have become key tools for the assess-
ment of climate change induced risks 
(Taubenböck et al., 2008). A large body 
of literature shows, that remote sensing 
not just holds the capabilities for analyz-
ing hazards such as droughts (Rhee et al., 

Introduction

Natural hazards have been and will al-
ways threaten our societies. Although 
we have a profound knowledge on his-
toric extreme natural events and their 
frequency, magnitude or spatial distri-
bution, the earth system is in constant 
change (Munich Re, 2017). As a con-
sequence, one aspect is climate change, 
which does not just infl uence patterns 
of natural hazards, but also patterns 
of vulnerability and exposure. At the 
same time, elements at risk are at con-
stant change. Urbanization processes 

Abstract: Disaster management is dependent on comprehensive information about the hazard’s nature and the elements 
exposed – independent of the location and extent of the hazard. This work explores methods to monitor water-related hazards 
and identify exposed elements based on multisensorial earth observation (EO) and auxiliary data in southern Africa. For 
the hazard-related perspective, we present methods to monitor fl oods based on radar data (Sentinel-1, TerraSAR-X) and 
droughts based on time series MODIS satellite data. For the exposure-related perspective, we classify exposed settlements 
from TerraSAR-X (TSX) and TanDEM-X (TDX) data. We assess people at risk and their respective locations, combining 
earth observation and census-based geoinformation. The datasets and methods are explored in two case studies investigating 
a fl ood in northern Namibia in 2011 and drought events in South Africa and Botswana in 2015 and 2016. The case studies 
show that the methods developed are crucial tools for hazard and exposure identifi cation, assessment, and monitoring.  

Resumo: A gestão de catástrofes está dependente de informação detalhada sobre a natureza do risco e dos elementos ex-
postos, independentemente da localização e da extensão do perigo. Este trabalho explora métodos para a monitorização de 
riscos relacionados com a água e para a identifi cação de elementos expostos na África Austral, com base na observação mul-
ti-sensorial da Terra (EO) e em dados auxiliares. Para a perspectiva relacionada com os riscos, apresentamos métodos para 
monitorizar cheias, baseados em dados de radar (Sentinel-1, TerraSAR-X), e secas, baseados nas séries temporais dos dados 
de satélite MODIS. Para a perspectiva relacionada com a exposição, classifi camos povoados vulneráveis a partir de dados de 
TerraSAR-X (TSX) e TanDEM-X (TDX). Avaliamos pessoas em risco e as suas respectivas localizações, ao combinarmos 
a observação da Terra com a geoinformação baseada em censos. Os conjuntos de dados e métodos são explorados em dois 
casos-de-estudo que examinam uma cheia no Norte da Namíbia em 2011, e eventos de seca na África do Sul e Botswana 
em 2015 e 2016. Os casos-de-estudo mostram que os métodos desenvolvidos são ferramentas cruciais para a identifi cação, 
avaliação e monitorização de riscos e da exposição.

2010; Winkler et al., 2017) and fl oods 
(Martinis et al., 2015; Taubenböck et al., 
2009), but also holds the capabilities for 
deriving exposed elements (Aubrecht 
et al., 2013; Geiß & Taubenböck, 2013) 
and assessing the related vulnerability 
of exposed elements (Geiß et al., 2014). 
 Exposure can generally be considered as 
the location and characteristics of the “el-
ements at risk,” vulnerability is defi ned 
as “the conditions determined by physi-
cal, social, economic and environmental 
factors or processes, which increase the 
susceptibility of a community to the im-
pact of a hazard” (UN/ISDR, 2004).

Monitoring fl ood and drought events – 
earth observation for multiscale assessment of 
water-related hazards and exposed elements
Inken Müller1*, Martin Hipondoka2, Karina Winkler1, Ursula Geßner1, Sandro Martinis1, Hannes Taubenböck1 

1 German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, Germany

2 University of Namibia, Windhoek
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This study presents the capabilities of 
multisource earth observation data, tech-
niques, and applications in the context 
of water-related hazards. We (1) show 
the potential of rapid mapping activi-
ties for reliable spatial assessments of 
fl ood impacts at the community level 
and (2) show the potential for identify-
ing agricultural droughts and quantifying 
potentially aff ected elements at national 
levels.

 

Study Area

The SASSCAL study area is southern 
Africa including the countries of Angola, 
Zambia, Namibia, Botswana, and South 
Africa (Fig. 1). In this study we work on 
three diff erent scales: On the continental 
scale, which includes all fi ve southwest-
ern countries of SASSCAL, we monitor 
water-related hazards and assess poten-
tially exposed elements.

The methods and information gathered 
on a continental scale are presented in two 
case studies, of which one is on a national 
and one on a local scale. The study area 
on a national scale focuses on droughts 
in 2015–2016 in South Africa and Bo-
tswana, whereas the study area on a local 
scale focuses on a fl ood event in northern 
Namibia in 2011. This study area, which 
is located in the most populous area of the 
Cuvelai-Etosha Basin, covers 143 km² in 
the Oshana region of Namibia and con-
tains the town of  Oshakati, which is the 

fi fth-largest city of Namibia (Mendel-
sohn et al., 2013). 

Data

Regarding hazard management, the avail-
ability of reliable, area-wide, up-to-date 
data is crucial for decision making. In the 
following we present and give reasons 
for the selection of a suite of satellite and 
sociodemographic data for monitoring 
the specifi c hazard (fl oods and droughts) 
as well as the identifi cation and locali-
zation of potentially exposed elements 
(settlements, people, land cover). Table 1 
provides an overview of the data used 
within this study.

Earth observation data
Satellite data are based on either pas-
sive optical systems or active radar 
(radio detection and ranging) or lidar 
(light detection and ranging) systems. 
The selection of the system for specif-
ic applications is infl uenced by various 
characteristics such as the geometric 
and temporal resolution. In this study 
we use radar and optical data for diff er-
ent applications as well as ready-to-use 
datasets (see Tab. 1).

Hazard-related remote sensing 
data

Flood
For the detection of surface water and 
thus, in exceptional circumstances, 
fl ooded areas, radar data are often the 
fi rst choice. In contrast to optical data, 
they provide continuous all-weather 
day/night imagery (Brakenridge et al., 
2003). In this study we rely on data 
from the Sentinel-1 mission, operated 
by the European Space Agency (ESA) 
in the framework of the European Un-

ion’s Copernicus Programme. Because 
fl oods are relatively short-lived events, 
a satellite image acquired during and/or 
shortly after the peak of a fl ood event is 
required to obtain up-to-date informa-
tion. Sentinel-1 is capable of providing 
this timeliness via a six-day exact repeat 
cycle and a repeat frequency (ascend-
ing/descending) of three days at the 
equator.  

Drought
Since the detection of agricultural 
droughts using remote sensing is based 
on diff erent spectral characteristics of 
healthy and stressed vegetation, optical 
earth observation (EO) data are applied 
for the approach suggested here. The as-
sessment of areas aff ected by droughts 
was based on 8-day series (MOD09A1) 
of the moderate resolution imaging 
spectroradiometer (MODIS). MODIS 
is a scientifi c instrument aboard the re-
search satellites Terra and Aqua oper-
ated by NASA, and the spatial resolu-
tion of the data is 500 meters per pixel 
(NASA, 2016).

Exposure-related remote sensing 
data

Settlements
For the classifi cation of potentially ex-
posed human settlements, we use very 
high-resolution (VHR) synthetic aper-
ture radar (SAR) images of the German 
TerraSAR-X and TanDEM-X missions 
that have been collected between 2011 
and 2013 (Esch et al., 2013). The vertical 
spatial resolution is 2 meters (relative) 
and 10 meters (absolute) within a grid of 
12 square meters. Thanks to the globally 
uniform elicitation and very high resolu-
tion, the dataset is very suitable for the 
computation of settlement areas on a 
global scale.

Figure 1: Study area

Table 1: Multisource geodata applied in this study 
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Floods
The Sentinel-1 Flood Service developed 
at the German Aerospace Center (DLR) 
is designed for fl ood detection and moni-
toring in near-real time (NRT). By user-
defi ned criteria, a Python-based script 
routinely queries the ESA Sentinel Data 
Hub for new acquisitions. If the user-de-
fi ned criteria on location, time, and so on 
match, the data are automatically down-
loaded and transferred into a fully auto-
matic processing chain for surface water 
classifi cation. The workfl ow consists of 
geometric correction and radiometric 
calibration of the Sentinel-1 data, initial 
classifi cation using automatic threshold-
ing, fuzzy-logic-based classifi cation re-
fi nement, and fi nal classifi cation includ-
ing auxiliary data. The fully automated 
processing chain allows time-critical 
disaster information in less than 45 min-
utes after a new dataset is available. The 
methodological details are published in 
Twele et al. (2016).

Droughts
Droughts are conceptually defi ned as an 
extended period of defi cit rainfall related 
to the long-term average condition for a 
specifi c region (Schneider et al., 2011). 
Nevertheless, no standard defi nition of 
drought exists. The monitoring of spec-
tral information using EO data relies on 
indices used as proxies to assess the con-
ditions of the vegetation. For the analyses 
of spatial-temporal patterns of droughts, 
we used a dataset produced by Winkler 
et al. (2017). It is based on the Vegeta-
tion Condition Index (VCI) calculated 
from MODIS 8-day series (MOD09A1) 
of the time period 2000 to 2016. The VCI 
compares the current NDVI to the val-
ues observed in the same time periods in 
previous years. Lower and higher values 
(expressed as percentages) indicate bad 
and good vegetation conditions, respec-
tively (Kogan, 1990). As proposed by 
Kogan (1995) and widely adopted by the 
drought-monitoring community (Deng 
et al., 2013; Gebrehiwot et al., 2011), a 
threshold of 35% for classifying droughts 
was applied (Winkler et al., 2017). Phe-
nological information is retrieved from 
previously generated NDVI time se-
ries using the software package TIME-
SAT 3.2 (Eklundh & Jönsson, 2015). To 

Land cover
The land cover map of the ESA Climate 
Change Initiative provides a detailed 
overview of the annual global distribu-
tion of land cover types from 1992 to 
2015. The spatial resolution of the data-
set is 300 meters, and land cover classes 
were obtained from the processing of 
the full archives of 300 m MERIS, 1 km 
SPOT-VEGETATION, 1 km PROBA-V, 
and 1 km AVHHR surface refl ectance 
7-day composites. We use this product to 
assess land cover classes potentially af-
fected by droughts.

Auxiliary sociodemographic data
Besides satellite-based data, we use aux-
iliary data to assess the exposure and vul-
nerability of people and elements in both 
study areas. 

For the analyses of sociodemographic 
situations, we rely on population data 
originating from the WorldPop project 
(Tatem, 2017), which provides detailed 
and open-access population distribution 
data sets. Peer-reviewed, transparent, 
and fully documented methods are used 
to transform and disaggregate population 
counts at administrative unit levels to 
100 m x 100 m grid cells (Tatem, 2017).

While the previous dataset is available 
for the entire SASSCAL area, we rely for 
our detailed case study at the local level 
on in-situ collected population data. They 
were collected in ground surveys by a 
mapping team after the 2011 fl ood in the 
relevant area.

For the socioeconomic vulnerability 
analyses, a georeferenced dataset of in-
frastructure comprising dwelling units 
and commercial and public services was 
obtained from the Namibia Statistics 
Agency (NSA, 2014).

Methods 

Hazard-related classifi cation 
using EO data
The selection of the data and the method 
of processing the data are strongly de-
pendent on the nature of hazards. Since 
fl oods can occur at short notice and 
droughts, in contrast to this, over long pe-
riods of time, diff erent methods of moni-
toring these events are necessary.

assess all relevant growing seasons, each 
dataset refers to an extended year that 
spans from August of the previous year 
to December of the current year. In the 
fi nally used datasets, the severity of the 
droughts is indicated by the percentage 
of time of the growing seasons aff ected 
by droughts. More details on the drought 
dataset and its derivation can be found in 
Winkler et al. (2017).

Exposure-related classifi cation 
using EO data
For the classifi cation of human settle-
ments, we use the original backscatter 
information as well as related texture in-
formation in TSX and TDX data. Highly 
textured surfaces such as vertical settle-
ment structures lead to an increase of 
directional, non-Gaussian backscatter 
with comparably high values. In turn, 
homogeneous surfaces without any true 
structuring such as grassland show al-
most no true texture. By this procedure, 
using local speckle statistics in the SAR 
data, we localize highly textured regions. 
Based on this input information, we de-
rive the thematic, binary mask identify-
ing built-up areas and non-built-up areas 
by analyzing the texture layer by means 
of a pixel-based image classifi cation pro-
cedure (Esch et al., 2013). The localized 
settlement areas are used as proxy for as-
sessing potentially exposed elements.

Case studies: application of haz-
ard and exposure products 
Space defi nes whether elements are ex-
posed to certain natural hazards, whereas 
the condition of the elements exposed 
defi nes whether they are vulnerable to 
the specifi c natural hazard. Based on two 
case studies, we analyze the elements 
exposed to a fl ood and drought event. 
Regarding droughts, however, it must be 
considered that people located in areas 
aff ected by droughts are not always ex-
posed as a consequence.

Floods
On a local scale we approach the assess-
ment of exposed people and cultivated 
land related to a fl ood that occurred in 
northern Namibia in 2011. Because Sen-
tinel-1A and Sentinel-1B were launched 
in 2014 and 2016, the fl ood mask used 



R
is

k 
m

an
ag

em
en

t

Bංඈൽංඏൾඋඌංඍඒ  Eർඈඅඈඒ 6    2018 139

in this study was processed by DLR’s 
TerraSAR-X Flood Service (Martinis et 
al., 2015), which is the previous model of 
the Sentinel-1 Flood Service. The fl ood 
mask displays the extent of the fl ooded 
area, including water bodies such as riv-
ers and lakes. To obtain the aff ected prop-
erties and people, the 2011 fl ood mask, 
infrastructure data, and population data 
are intersected for computing geometri-
cally overlapping features. The resulting 
attribute table is then employed to derive 
aff ected properties and number of people.

Droughts
At a national scale we approach the assess-
ment of elements aff ected by droughts for 
the countries of South Africa and Botswa-
na. To exemplify the EO-based capabili-
ties, we used 2015/2016 data sets. To de-
fi ne droughts, the observations made from 
August 2015 to December 2016 were clas-
sifi ed into diff erent severity levels. We use 
four classes (less than 25% of the grow-
ing season, 25–50%, 50–75% and more 
than 75% of the growing season aff ected 

by drought events) to assess the severities 
of droughts. For assessing the exposure of 
diff erent land cover types to droughts, we 
compute a spatial overlay analysis localiz-
ing the share of diff erent land cover types 
aff ected by the drought events.

The population living in areas aff ected 
by droughts is derived by a spatial over-
lay analysis of the percentage of growing 
season aff ected by drought and auxilia-
ry population data originating from the 
WorldPop dataset.

Results

The fi rst section presents the techniques 
and applications developed to monitor 
water-related hazards on a continental 
scale based on multisource earth observa-
tion data. Second, datasets generated for 
exposure assessments in the SASSCAL 
region are shown. In the last section, the 
exploitation of the developed methods 
and generated datasets is presented on 
the basis of the case studies.

Hazard monitoring in SASSCAL 
region
Natural hazards feature specifi c spatial 
patterns. Figure 2b presents such a spe-
cifi c and distinct pattern for droughts, 
which occurred between August 2015 
and December 2016. A clear spatial grade 
is illustrated for drought severity across 
space. Equivalent maps were available 
for each year between 2000 and 2016, 
revealing the variability in spatial distri-
butions and extents as well as severities 
over time. The datasets show the capa-
bilities of multitemporal remote sensing 
data for monitoring the explicit spatial 
component of droughts in the SASSCAL 
region. In the sample year displayed, the 
western parts of southern Africa are sig-
nifi cantly aff ected during the growing 
season, while the northern and eastern 
parts rarely suff er. In addition, Figure 2a 
illustrates one example of the more than 
100 fl ood events monitored in the area of 
SASSCAL since 2013. In comparison to 
droughts, fl oods are a rather local event. 
Within the area of SASSCAL, most 

Figure 2: (a) Exemplary extent of water mask processed by TerraSAR-X/Sentinel-1 fl ood processor and (b) percentage of growing season 
affected by drought in 2015–2016 
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observations were made in the Cuve-
lai-Etosha Basin in the north of Namibia 
and at the border area between Namibia, 
Botswana, and Zambia. The fl oods mon-
itored cover areas ranging from a few 
square kilometers up to several hectares, 
such as the one displayed in Figure 2a 
that stretches over 70 km from north to 
south and 100 km from east to west.

Exposure assessment in 
SASSCAL region
As with natural hazards, the exposed el-
ements also feature specifi c spatial pat-
terns. The classifi cation of settlement 
distribution (global urban footprint at a 
spatial resolution of 12 m) is displayed in 
Figure 3a, indicating the uneven devel-
opment of human settlements in southern 
Africa. The clustering of settlements in 
northeast South Africa with Johannes-
burg as center reveals this uneven spatial 
distribution of possibly exposed built 
environment when compared to, for ex-
ample, the rural and very low-density 
settlement areas in Botswana or Namibia. 

In addition to the spatial distribution of 
settlements, the population density is dis-
played in Figure 3b at a spatial resolution 
of 1 ha. The comparison of both datasets 
illustrates similarities and refl ects that the 
spatial clustering of the built environment 
obviously correlates with population 
densities; despite the existence of cor-
relation between built-up environment 
and population densities,  however, some 
diff erences exist. Overall, these datasets 
clearly show the capabilities of earth ob-
servation data to provide an assessment 
of exposure on a continental scale.

Local scale analysis: Exposure 
to water-related hazards
The classifi cations of hazard- and expo-
sure-related parameters reveal the un-
even spatial distribution of each perspec-
tive. To assess exposure, we illustrate 
the capabilities of these geoinformation 
layers for assessing elements at risk for 
two examples: a fl ood event in Namibia 
in 2011 and drought events in South Af-
rica in 2015.

Flood
Figure 4 presents the distribution of 
aff ected properties during the receding 
stage of the fl ood, which had peaked 
two weeks earlier in relation to the 
April 1, 2011, fl ood mask. Because 
Sentinel-1A and Sentinel-1B had been 
launched in 2014 and 2016, the fl ood 
visualized in Figure 4 was processed 
by the TerraSAR-X fl ood processor, 
which is the previous model of the 
Sentinel-1 fl ood processor. During that 
period of the fl ood on April 1, 2011, 
Oshakati and its environs had approxi-
mately 11,900 properties, of which 
270 (2.3%) were still aff ected by the 
fl ood. Almost 90% of the fl ooded prop-
erties were situated in settlement areas, 
and only 11% were in the countryside. 
Within the settlement areas, 82% of 
these properties were in informal set-
tlements, confi rming the often pro-
claimed exposure of the urban poor 
posited by, for example, Braun and 
Aßheuer (2011), Davis (2007), and 
Douglas et al. (2008). 

Figure 3: Settlement classifi cation based on (a) the Global Urban Footprint and (b) population density within SASSCAL area based on 
WorldPop data 
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The spatial analysis reveals that 47% 
of the entire aff ected building stocks 
were dwellings. In the period under con-
sideration, the study area had a popula-
tion of approximately 47,000 residents, 
out of which 680 (1.5%) were being di-
rectly aff ected. The next most aff ected 
(35%) category of properties pertained to 
demolished structures or vacated dwell-
ings. Commercial properties accounted 
for 16%, while public services were least 
aff ected (less than 1%).

Drought
To assess the impact of droughts, we 
calculate the share of areas aff ected by 
drought of diff erent persistency for four 
Climate Change Initiative land cover 
classes (Fig. 5).

In general we found that diff erences 
in spatial distributions of droughts and 
exposed elements led to signifi cant dif-
ferences in drought hazards in neighbor-
ing countries. In Botswana almost 20% 
of croplands and almost 10% of natural 
vegetated areas suff ered from drought 
that lasted longer than 75% of the grow-
ing season. This is a signifi cantly higher 
impact than in South Africa, where only 
3% of the croplands and 1% of natural 
vegetated areas suff ered this intense 
drought situation. Nevertheless, the focus 
should be not on extreme values but on 
the distribution of the share of the single 
land cover classes in terms of drought 

persistency. For example, in Botswana 
drought persistency above 25% aff ected 
more than 20% of cropland (rainfed), 

while in South Africa less than 5% of 
the cropland (rainfed) was aff ected by 
droughts lasting longer than 75% of the 

Figure 4: Distribution of fl ooded properties in and around Oshakati on April 1, 2010, two weeks 
following the fl ood peak

Figure 5: Percentage of land cover classes affected by droughts of different persistency
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growing season. Additionally to the share 
of aff ected land cover, we calculated the 
share of the population living in aff ected 
areas diff erentiated in accordance with 
drought persistency (Tab. 2). 

In both countries most people living 
in areas of investigated land covers were 
aff ected by droughts that lasted for 25% 
to 75% of the growing season (Botswana, 
11.9% of the total population; South Afri-
ca, 14.9% of the total population). Because 
of the diff erence in total population num-
bers, the absolute number of people living 
in areas aff ected by droughts during 25% 
to 75% of the growing season is 30 times 
greater in South Africa (7.5 million) than in 
Botswana (about 250,000). Nevertheless, 
comparing the population living in areas 
aff ected by droughts lasting longer than 
50% of the growing season, the relative 
population aff ected is higher in Botswana 
(10.4%) than in South Africa (4.3%).

Discussion

Earth observation data in combination 
with other geodata are capable of detect-
ing and monitoring water-related hazards 
and identifying exposed elements. The 
study reveals the immense capability of 
multisensorial and multitemporal remote 
sensing applications for identifying and 
evaluating diff erent components of risk 
spatially for large areas as well as in high 
spatial and thematic detail. 

In general, remote sensing allows as-
sessment of risk with high accuracy; it 
must be considered, however, that remote 
sensing methods do not produce cadastral 
data sets with respect to accuracy. Also, 
vegetation parameters used as proxies to 
assess droughts may not provide a perfect 
match. Thus, the methods of deriving fl ood 
masks, monitoring droughts, and classify-
ing land cover can be optimized using 
better-calibrated algorithms or diff erent, 

from the previous fl oods that took place 
in the area for two consecutive years, 
2009–2010 (Mendelsohn et al., 2013). 
Even if additional datasets – as in this case 
study – were not available, the settlement 
classifi cation based on the Global Urban 
Footprint and the population data from 
WorldPop provide suffi  cient information 
about hot spots aff ected by fl oods. 

For people involved in hazard manage-
ment, the results of the exposure analysis 
(settlement distribution and population 
data) can easily be made available, and 
the case studies show that EO data are 
capable of providing a unique overview 
of hazardous situations.

Climate is changing, and to be able to 
adapt to these changes it is crucial to mon-
itor the changing systems. In contrast to 
monitoring fl oods, the aim of monitoring 
drought is to gain knowledge in order to 
address the following question: What ar-
eas are most aff ected with respect to spa-
tial extent, persistency, and intensity of 
droughts? In the case study, the growing 
seasons of two countries are compared as 
an example; the long-term data obviously 
allow much more research on various 
spatial and temporal scales. In general, 
one limitation of the drought dataset used 
in this study is its spatial resolution of 
500 meters. As a matter of fact, the spa-
tial resolution of the data used limits the 
ability to detect droughts on, for example, 
scattered small-sized fi elds surrounded 
by other land cover types (e.g., irrigated 
fi elds, natural vegetation). However, 
medium-resolution data such as MODIS 
are to date the only available satellite data 
that provide suffi  cient and consistent time 
series to be used to assess anomalies and 
thus drought. As soon as longer high-res-
olution time series (e.g., Landsat-8, Sen-
tinel-2) become available within the next 
few years, there will be new potential for 
assessing drought at a higher spatial reso-
lution. Although the data do not consist 

higher-resolution datasets, or by extend-
ing thematic information (e.g., by assess-
ing fl ood depth in addition to fl ood extent). 
For example, studies dealing with fl ood or 
settlement detection based on EO data re-
vealed that accuracies are in the range of 
80–90% (Klotz et al., 2016; Martinis et al., 
2015), which allow assessment with high 
reliability. The following discussion sheds 
light on the capabilities of EO data in 
terms of hazard management, the value of 
the developed methods and derived data-
sets. Furthermore, the discussion focuses 
on the benefi ts and challenges of applying 
EO data in managing hazards.

Mapped fl oods derived from freely 
available EO data, which are independent 
of weather condition and daylight, pro-
vide information of unique spatial scale 
and resolution. EO data enable the moni-
toring of fl oods on a continental scale and 
can provide information about the spa-
tial extent of fl oods within a few hours. 
Nevertheless, the temporal resolution of 
Sentinel-1 data in Africa is not as high 
as stated by the European Space Agency; 
we observed that the temporal resolution 
ranges from a few weeks to a couple of 
days depending of the area of interest in 
the SASSCAL region. The importance of 
the timeliness of the data in case of fl oods 
is also highlighted in the case study. Be-
cause of runoff , high evaporation rates, 
and permeability, the fl ood extent captured 
two weeks after the fl ood peak inevitably 
underestimates the impacted infrastruc-
ture and number of people. Nevertheless, 
it reveals the persistence of the fl ood im-
pact, which is crucial for fl ood damage 
assessment. In our study case, people in 
informal settlements were identifi ed as 
the most aff ected, partly as a result of 
the fact that they often (have to) settle in 
marginalized areas, including fl ood-prone 
zones. The high number of demolished or 
vacated dwellings in and around Oshakati 
may be attributed to earlier displacement 

Table 2: Relative and absolute share of population living in areas affected by droughts of different persistency
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of information about the impact of these 
droughts on the population, the data are 
crucial for long-term analysis. 

Climate change comes with an increas-
ing frequency and intensity of extreme 
events. Those require instruments for rapid 
monitoring to support hazard management 
and thus well-founded decisions by stake-
holders. Climate change also comes with 
long-term changes. EO data are capable 
of providing information on both of these 
temporal scales. Therefore, the methods 
developed provide data not only in the 
short term but also in the long-term, which 
helps us understand changing systems.

Conclusion

In general, earth observation data and 
techniques feature immense potential for 
identifying, assessing, and monitoring wa-
ter-related hazards. The obvious and nec-
essary extension in the future will be the 
increase in information content. High-res-
olution digital surface models might allow 
assessments of fl ood depth, new missions 
such as Sentinel will increase the spatial 
resolution of drought monitoring (He et 
al., 2016), and very high-resolution opti-
cal satellite data increase the thematic res-
olution of, for example, settlements into 
structural types such as business districts 
or slums (Taubenböck & Kraff , 2014). Be-
yond, in the time of “big data”, the combi-
nation with other geodata – as exemplifi ed 
here with population and socioeconomic 
data – holds immense capabilities for 
more comprehensive perspectives on 
hazards, exposure, vulnerability, and ul-
timately risks. Data sources of relevance 
include census, open geoinformation, and 
social media data. In conclusion, the new 
advent of data off ers immense capabilities 
for better geoinformation for risk man-
agement; however, the methodologies and 
the topic-adpated useful applications still 
need to be developed.
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