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Abstract: In this paper we present an estimate of above-ground biomass (AGB) in the dry tropical forests and woodlands 
of southern Angola, western Zambia, northern Namibia and northern Botswana. Furthermore, we investigated the envi-
ronmental variables infl uencing the spatial distribution of AGB. We compiled data from 498 vegetation plots and forest 
inventories covering seven vegetation types. The dataset contained measurements of 8803 individual trees belonging 
to 167 diff erent species. The frequency of the trees per diameter at breast height (DBH) classes indicated healthy com-
munity structures with all vegetation types of miombo (Zambia and Angola), Baikiaea (Angola and Namibia), Baikiaea-
Combretum, mopane, and Terminalia showing high number of trees in the smaller classes. We used two regional allo-
metric equations developed for the miombo woodlands by Ryan (2011) and Chidumayo (2013) to calculate AGB. The 
highest AGB was recorded in the miombo woodlands of Zambia (median = 82.2 t/ha), followed by the dense Baikiaea-
Combretum woodlands in Angola  (median = 61 t/ha) and the Angolan miombo woodlands (median = 60.4 t/ha). Using 
generalized linear models, we analysed the relationship of AGB and environmental variables. Mean annual precipitation 
had the highest predictive power, explaining almost two thirds of the variance. Our conclusion was that, at regional scale, 
climate is a key driver of vegetation patterns, and biomass is no exception. There is a high local variability, however, that 
cannot completely be explained by gridded environmental datasets. 
 
Resumo: Neste artigo, apresentamos uma estimativa da biomassa acima do solo (AGB) em fl orestas tropicais secas e bos-
ques do Sul de Angola, Oeste da Zâmbia, Norte da Namíbia e Norte do Botswana. Além disso, investigamos as variáveis 
que infl uenciam a distribuição espacial da AGB. Compilámos dados de 498 parcelas de vegetação e inventários fl orestais, 
cobrindo sete tipos de vegetação. O conjunto de dados continha medições de 8803 árvores individuais, pertencentes a 
167 espécies diferentes. A frequência das classes de árvores por diâmetro à altura do peito (DBH) indicou estruturas 
comunitárias saudáveis com todos os tipos de vegetação de miombo (Zâmbia e Angola), Baikiaea (Angola e Namíbia), 
Baikiaea-Combretum, mopane e Terminalia, mostrando um grande número de árvores nas classes mais pequenas. Uti-
lizámos duas equações alométricas regionais, desenvolvidas para bosques de miombo por Ryan (2011) e Chidumayo 
(2013), para calcular a AGB. A mais elevada AGB foi registada nos bosques de miombo da Zâmbia (mediana = 82,2 t/ha), 
seguida pelos bosques densos de Baikiaea-Combretum em Angola (mediana = 61 t/ha) e os bosques de miombo angolano 
(mediana =  60,4 t/ha). Com  recurso aos modelos lineares generalizados, analisamos a relação entre a AGB e variáveis 
ambientais. A precipitação média anual teve o maior poder preditivo, explicando quase dois terços da variância. A nossa 
conclusão foi que, à escala regional, o clima é um factor importante para os padrões da vegetação, e a biomassa não é 
excepção. Existe uma elevada variabilidade local, no entanto, esta não pode  ser completamente explicada pelo elevado 
conjunto de dados ambientais.
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Introduction

Dry tropical forests and woodlands cover 
large parts of southern Africa and are pre-
sent in all fi ve SASSCAL countries. They 
occur mainly in the northern, more mesic 
parts of the region that have a marked 
dry season lasting for several months per 
year but still receive suffi  cient precipita-
tion during the wet season to support the 
growth of broad-leafed trees, reaching 
canopy heights well above ten meters 
(De Cauwer et al., 2018). From a fl oris-
tic perspective, most of the woodlands 
in southern Africa fall into the Zambe-
zian Phytoregion (White, 1983). Most 
of the dominant species of the tree layer 
belong to the Fabaceae family, but spe-
cies of the Rubiaceae and Combretaceae 
play an important role too (Chidumayo 
& Gumbo, 2010). Ecosystem services 
from these woodlands provide important 
contributions to the livelihoods of over 
100 million rural people and 50 million 
urban dwellers, mitigating some of the 
symptoms of the chronic poverty in the 
region (Dewees et al., 2010). As such, 
the woodlands provide the local popula-
tion with several products ranging from 
timber and fuelwood to charcoal, honey, 
construction materials, and medicine. 
Furthermore, they are crucial for carbon 
storage, the water cycle, and climate reg-
ulation (Chidumayo, 1997; Frost, 1996; 
Ryan et al., 2011). As such, woodlands 
play a broad, twofold role: fi rst, provid-
ing valuable ecosystem services such as 
increasing resilience through protecting 
watersheds and stream-fl ows, controlling 
erosion, enhancing soil fertility, regulat-
ing the climate, and protecting biodiver-
sity; and, second, serving as a diverse 
source of jobs and livelihoods for African 
economies and citizens.

Understanding the spatial patterns of 
biomass in the Zambezian Phytoregion 
is important for providing insight into 
biomass variation and the infl uence of 
the environment, providing information 
on the carbon emissions related to land 
use change, establishing carbon mapping 
schemes, and modelling responses of the 
woodlands to their changing environ-
ment. African tropical forests and wood-
lands have been characterised by previ-
ous studies (Brown, 1997; Chave et al., 

2005) as holding relatively high carbon 
stocks. 

The decrease in dry tropical forests and 
woodlands in Africa is alarmingly severe 
as a result of overutilization and land use 
changes (Dewees et al., 2010). The pro-
tection and sustainable management of 
forest carbon stocks, particularly in the 
tropics, is a key factor in mitigating global 
change eff ects. Nevertheless, our knowl-
edge of how the environment aff ects car-
bon stocks in tropical ecosystems needs 
to be improved. For a sustainable man-
agement of woodlands and forests, spa-
tial and temporal information on ecosys-
tem structure, species composition, and 
biomass (carbon stocks) is indispensable 
(Thompson et al., 2012). Ground-based 
information is sparse to absent for vast 

ground measurements to predict biomass 
for the entire tropics. 

Estimates of forest AGB are approxi-
mations relying on a combination of land 
cover type and corresponding mean car-
bon derived from fi eld surveys, instead 
of spatially explicit biomass maps (Car-
reiras et al., 2013). In the fi eld, the AGB 
of woodlands can be estimated based on 
allometric equations that relate the breast 
height diameter (DBH) of a tree, a com-
mon measurement used in forest invento-
ries, to its biomass. These equations are 
based on destructive harvesting and sub-
sequent weighing of the biomass of the 
tree and are thus very labour-intensive. 
However, the established relationship 
between DBH and AGB allows the rapid 
quantifi cation of AGB for forest stands 

parts of south-central Africa, however. In 
contrast to tropical rainforests, dry tropi-
cal forests and woodlands have not been 
the focus of research (Bodart et al., 2013) 
and ground-based studies and forest in-
ventories are scarce (Tewari, 2016).

Instead, several studies have tried 
to estimate the above-ground biomass 
(AGB) of forests in tropical regions us-
ing modelling and remote sensing ap-
proaches. Saatchi et al. (2011) devel-
oped a benchmark map of forest carbon 
stocks in the tropical regions across three 
continents. This study used a combina-
tion of data from in situ inventory plots 
and remote sensing to extrapolate from 
a spatially biased and limited number of 

solely based on measurements of the 
DBH of the individual trees. A number 
of comprehensive allometric models for 
biomass estimation have been developed 
for the major forests and woodlands in 
Europe, the Americas, and Asia (Chave 
et al., 2014). In countries of sub-Saharan 
Africa, most studies estimating biomass 
or carbon stocks have also used allomet-
ric models together with forest inventory 
data (Mate et al., 2014; Mwakalukwa et 
al., 2014; Halperin et al., 2016). Ideally, 
allometric equations are developed for 
the specifi c woodland type in question, 
as the relationship is sensitive to species, 
and also the prevailing environmental 
conditions at the sites.

Figure 1: Map of the study sites and the seven vegetation types.
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precipitation gradient ranging from the 
semi-arid Kalahari Desert in northern 
Botswana, with mean annual precipita-
tion of 500 mm, to the semi-humid areas 
in north-western Zambia and central An-
gola, which receive up to 1,400 mm of 
yearly precipitation. Diff erences in mean 
annual temperature are less pronounced, 
ranging from 21 to 23°C. The study area 
is mostly covered by Kalahari sands, 
making arenosols with low nutrient con-
tent the dominant soil types. The western 
parts of the study area in Angola’s Huíla 
and Bíe provinces, however, have a dif-
ferent underlying geology, and the com-
mon soil types are ferrasols.

The objectives of this paper are:
1. to provide an estimate of AGB of the 

dry tropical forests and woodlands 
of southern Africa based on tree 
measurements in the fi eld using two 
allometric equations, and

2. to investigate the environmental 
drivers of AGB on a regional scale.

Methods

The study was carried out in dry tropi-
cal forests and woodlands of Angola, 
Botswana, Namibia, and Zambia (Fig. 1, 
Tab. 1). The sampled area covers a strong 

Central Angola and Zambia are cov-
ered by brevi-deciduous miombo wood-
lands, which are dominated by Brachyste-
gia species and Julbernardia paniculata 
(Tab. 1). The canopy is more or less closed 
and reaches heights well above 10 me-
ters, and in Zambia even above 20 m 
(De Cauwer et al., 2018; Revermann et 
al., 2018). With decreasing precipitation 
southwards, the miombo woodlands give 
way to Baikiaea woodlands characterised 
by an interrupted canopy closure (De 
Cauwer et al., 2016; Revermann et al., 
2018). The most southerly and driest part 
included in this study is north of the Oka-
vango Delta, where mopane woodlands 

Woodland
type

Most frequent species Total annual
precipitation

(mm)

Temperature
range
(°C)

Silt content
topsoil
(%)

Coarse
fragments
topsoil
(%)

Fire frequency
(number
of years)

Human
impact
index

Miombo
(Angola)

Julbernardia paniculata,
Brachystegia spiciformis,
Brachystegia longifolia,
Brachystegia spp. 2

1123 (129) 10.7 (0.9) 11.2 (3.4) 4 (3) 0.8 (1.6) 17 (3)

Miombo
(Zambia)

Julbernardia paniculata,
Brachystegia boehmii,
Diospyros batocana,
Guibourtia coleosperma

999 (38) 9.6 (0.1) 26.5 (4) 0.8 (1.2) 0 (0) 14 (2)

Baikiaea
(Angola)

Baikiaea plurijuga,
Burkea africana,
Combretum collinum,
Erythrophleum africanum

689 (76) 11.1 (0.4) 10.3 (3.4) 4.6 (3.8) 2.4 (2.1) 12 (2)

Baikiaea
Combretum

Baikiaea plurijuga,
Philenoptera nelsii,
Commiphora tenuiptulata,
Acacia ataxacantha

739 (6) 10.9 (0) 16 (2) 0.6 (0.5) 0 (0) 9 (0)

Baikiaea
(Namibia)

Baikiaea plurijuga,
Philenoptera nelsii,
Commiphora tenuiptulata,
Acacia ataxacantha

572 (24) 11.2 (0.1) 9.6 (2.7) 4.9 (3.6) 1.7 (1.6) 12 (5)

Mopane Colophospermum mopane,
Baikiaea plurijuga,
Acacia erioloba,
Philenoptera nelsii

476 (5) 11.2 (0.1) 8.8 (1.3) 1.9 (0.9) 0.4 (0.5) 10 (2)

Terminalia Terminalia sericea,
Combretum collinum,
Acacia erioloba,
Burkea africana

478 (22) 11.2 (0) 8.9 (3) 1.8 (1.5) 0.2 (0.4) 12 (6)

Table 1: Most frequent species of the vegetation types and prevailing environmental conditions at the plot locations; mean values are given 
and the standard deviation in brackets; the temperature range was presented as the mean of the monthly range of the minimum and maxi-
mum temperatures.



Fo
re

st
 re

so
ur

ce
s

312                                             Cඅංආൺඍൾ ർඁൺඇൾ ൺඇൽ ൺൽൺඉඍංඏൾ අൺඇൽ ආൺඇൺൾආൾඇඍ ංඇ ඌඈඎඍඁൾඋඇ Aൿඋංർൺ

and Terminalia shrublands dominate. 
Trees in dense woodland or more open 
savanna woodland may reach heights of 
10 m to 15 m in deep alluvial soils, and 
attain 25 m in the ‘cathedral mopane’ 
of Zambia (Ben-Shahar, 1998). Mopane 
tends to be stunted and shrubby (1–3 m) 
where it occurs in impermeable alkaline 
soils (Vermeulen, 1996).

Sampling design
For this analysis, we compiled data on 
tree measurements from diff erent plot-
based surveys. We included data from 
the Vegetation Database of the Oka-
vango Basin (Revermann, 2016) from 
SASSCAL biodiversity observatories 
(Zambia: S51 Luampa, S52 Dongwe, S53 
Kafue National Park; Angola: S74 Cuss-
eque, S75 Bicuar National Park), from 
the Vegetation Survey of Huíla Province 
(Chisingui et al., 2018), and from the for-
est inventory in northern Namibia (De 
Cauwer et al., 2016). Vegetation plots of 
the surveys and on the biodiversity ob-
servatories were sized 20 m × 50 m. The 
sample plots of forest inventory in Na-
mibia and in southern Angola followed a 
circular, nested design with a maximum 
radius of 30 m, as suggested for Namibia 
forest inventories by Burke et al. (2001). 
In every plot, all trees above a certain 
diameter at breast height (DBH) thresh-
old were measured for height and DBH. 
As the threshold varied in the diff erent 
surveys, we considered only trees with 
a DBH > 10 cm. Based on these meas-
urements, the AGB was estimated using 
allometric equations. As results obtained 
by diff erent equations calibrated at dif-
ferent locations can vary substantially 
(Ciais et al., 2011), we used two equa-
tions from the miombo region, to obtain 
an idea of the uncertainty caused by the 
use of diff erent allometric equations. 
Equation 1 was calibrated in Mozam-
bique by Ryan et al. (2011) and provides 
an estimate of the carbon content of the 
stem. We used the generally accepted ra-
tio of the carbon fraction in woody dry 
matter of 0.47 (Eggleston et al., 2006) to 
convert carbon to AGB. Equation 2 was 
calibrated in the miombo woodlands of 
Zambia (Chidumayo, 2013). Finally, the 
aggregated biomass in kilograms per plot 
was converted to tonnes per hectare.

Eq. 1: ln(Bstem) = 2.601 ln(DBH) – 3.629

Eq. 2: ln(AGB) = 2.5553 ln(DBH) – 2.5265

where DBH is the stem diameter at breast 
height in cm, ln is the natural logarithm; 
AGB is the above-ground dry biomass in 
kg, and Bstem is the AGB of the stem in kg C. 

Stati stical analyses
To provide fi gures for the diff erent sub-
regions of the study area, the plots were 
grouped into seven major vegetation types: 
miombo woodlands in Angola and Zambia, 
Baikiaea woodlands in Angola and Namib-
ia, Baikiaea-Combretum woodlands with 
thicket-like understorey (this vegetation 
type mainly occurs in certain parts of south-
ern Cuando Cubango Province in Angola; 
for a description of this rare woodland type 
see Wallenfang et al., 2015), mopane wood-
lands, and Terminalia shrublands (Fig. 1). 
To visualize the structure and population 
status of the diff erent vegetation types, we 
calculated size class distribution curves.

To investigate the environmental drivers 
of spatial patterns of AGB, we compiled 
environmental data from various sources 

covering the entire region. Bioclimatic 
data were derived from CHELSA Climate 
Database (Karger et al., 2017); information 
on soil nutrients, soil texture, soil pH, and 
conductivity in the top- and subsoils were 
calculated for each plot location based on 
the data from the global soils database 
(Hengl et al., 2017; soilgrids.org). As dis-
turbance and land use history are crucial 
factors infl uencing vegetation patterns, we 
furthermore included information on fi re 
frequency and fi re season derived from 
the MODIS burned area product (Stellmes 
et al., 2013). These variables along with 
the major vegetation types (see above) 
were used as predictor variables in a gen-
eral linearized model (GLM) with AGB as 
the response variable assuming a gamma 
distribution. Predictor variables were 
checked for collinearity among pairs of 
predictor variables using the Pearson co-
effi  cient of correlation. In the case of high 
collinearity, one of a pair of highly corre-
lated variables was removed from the set 
of variables (Dormann et al., 2013). The 
minimum adequate model was identifi ed 
based on backward variable selection and 
the Akaike information criterion.

Figure 2: Size class distribution of the measured trees in each major vegetation type 
Baikiaea-Combretum, Baikiaea (Angola), miombo (Angola), miombo (Zambia), mopane, 
and Terminalia; only trees with DBH > 10 cm were considered (no diagram for Baikiaea 
woodlands in Namibia is displayed).
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Re sults

In total, 8803 individual trees were meas-
ured. A cumulative total of 167 woody 
species, 7 of which had not been identi-
fi ed to the genus level, were recorded. The 
species that were most abundant in the mi-
ombo woodlands were Julbernardia pan-
iculata, Brachystegia boehmii, B. spici-
formis, B. longifolia, and Cryptosepalum 
exfoliatum subsp. pseudotaxus. Common 
trees of the Baikiaea woodlands besides 
the species Baikiaea plurijuga were 
Burkea africana, Combretum collinum, 
Erythrophleum africanum, and Philenop-
tera nelsii. At the study site in Botswana, 
Colophospermum mopane, Terminalia 
sericea, Acacia erioloba, and Philenop-
tera nelsii were dominant (Tab. 1).

Though the Baikiaea woodlands had 
the thickest trees, tree densities were much 
lower; indeed, the miombo with the high-
est tree density in Zambia was fi ve times 
denser than the Baikiaea woodlands with 
the lowest tree density in southern Angola 
(De Cauwer et al., 2018). The frequency 
of trees per DBH class for the seven major 
vegetation types showed a higher number 
of trees in the smaller classes in all veg-
etation types (Fig. 2).

Both allometric equations resulted in 
similar relative patterns of the distribu-
tion of AGB within vegetation types 
(Fig. 3, Tab. 2). AGBRyan provided a 
constant lower estimate compared to 
 AGBChidumayo. The highest AGB was 
found in the miombo woodlands of 
Zambia, followed by the Baikiaea-Com-

bretum woodlands in south Angola and 
the Angolan miombo woodlands. The 
AGB in the Angolan Baikiaea wood-
lands was slightly higher than that of the 
Baikiaea woodlands in Namibia and the 
mopane woodlands in Botswana. Termi-
nalia shrublands had the lowest values in 
the entire study (Fig. 3, Tab. 2). It needs 
to be highlighted that there was high var-
iation within the dataset, indicated by the 
high median absolute deviation (MAD) 
for all vegetation types.

Enviro nmental drivers of above-
ground biomass
Many of the climate variables showed 
strong collinearity, so one variable from 
each highly correlated pair had to be re-
moved as a predictor variable. The same 
held true for the soil variables. The fi nal 
models, with AGBChidumayo and AGBRyan as 
response variables, contained the same 
predictor variables and displayed very 
similar model coeffi  cients (Tab. 3). They 
both showed fairly low performance, 
with 16.1% and 15.3% explained devi-
ance respectively. In the following, we 
will present results only for the model 
based on AGBChidumayo.

The variable with the highest predic-
tive power was mean annual precipita-
tion, explaining almost two thirds of the 
variance (Tab. 3). Generally, regions with 
higher precipitation showed higher AGB 
(Fig. 4). Mean annual precipitation ex-
hibited a strong negative correlation with 
mean annual temperature. The second 
most important variable was silt content 
of the topsoil, explaining one fi fth of the 
variance. Each of the remaining predictor 

      AGBRyan (t/ha)           AGBChidumayo(t/ha) 

Major vegetation type Median MAD Median MAD 

Miombo woodlands (Zambia) 67.2 20.7 82.2 24.6 

Miombo woodlands (Angola) 48.8 37.2 60.4 45.5 

Baikiaea-Combretum woodlands 50.2 29.8 61.0 35.6 

Baikiaea woodlands (Angola) 32.5 27.8 39.2 33.5 

Baikiaea woodlands (Namibia) 26.3 20.1 32.1 24.2 

Mopane woodlands 25.6 22.9 31.5 28.2 

Terminalia shrublands 3.7 3.4 4.6 4.2 

total 35.3 32.6 42.9 39.5 

Table 2: Summary of above-ground biomass (AGB) in tonnes per ha according to the 
four major vegetation types and for the two allometric equations (Eq. 1 × 0.47, Ryan et al. 
[2011]; Eq. 2, Chidumayo [2013]). The median per vegetation type is given, and the varia-
tion is depicted by the median absolute deviation (MAD).

Figure 3: Estimated AGB (t/ha) according to the major vegetation types in the study area based on DBH measurements of individual trees 
and allometric equations by Ryan et al. (2011) (a) and Chidumayo (2013) (b).

a b
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variables contributed less than 10% to the 
explained variance (Tab. 3, Fig. 4).

Di scussion

Stand  structure and above-
ground biomass
Tree size distributions are a simple yet 
eff ective tool for describing tree popula-
tions and woodland stands, and the dis-
tribution of diameters is the most potent 
simple factor for depicting the properties 
of a stand of trees (Ferreira de Lima et al., 
2014). The community structure — the 
shape of the diameter distribution for all 
the vegetation types in our study — was 
typical for self-regenerating communi-
ties: the highest numbers of individuals 
were found in the smallest class. This so-
called inverse J–shaped distribution is an 
indication of healthy population structure 
in which recruitment rates are higher than 
mortality (Sop et al., 2011).

Both allometric equations used in this 
study provided similar fi gures. However, 
the equation by Ryan et al. (2011) from 
Mozambique provided consistently lower 
estimates. As this equation is calibrated 
for the stem biomass and not the entire 
above ground biomass of the tree, this 
makes sense. The highest median estimat-
ed for miombo (Zambia) in Chidumayo’s 
was about 82 t/ha. These results match 
well with the modelled AGB based on re-
mote sensing data supplied by Saatchi et 
al. (2011). Interestingly, the largest trees 
did not occur in the vegetation types with 
the highest AGB, the miombo woodlands, 
but in the Baikiaea woodlands. The Bai-
kiaea woodlands are characterized by 
a more open canopy than the miombo 
woodlands and feature thick individual 
trees with large canopies. However, tree 
densities are low and there are large gaps 
in between the individual tree canopies, 
resulting in a grassy matrix in the inter-
canopy area (Revermann et al., 2018). 
Thus, the much higher density of trees 
in the miombo woodlands compensates 
for, in the mean, smaller individuals  (De 
Cauwer et al., 2018). The highest esti-
mated AGB in the miombo woodlands of 
Zambia could be explained by the equally 
high density of stems per hectare as well 
as the presence of more individuals from 

the larger size classes than in Angolan mi-
ombo woodlands (Fig. 2). 

The estimation of AGB using allometric 
equations comes with its own uncertainty 
when one considers either pantropical 
models that diff er signifi cantly in the esti-
mation of AGB from regional models (see 
Sichone et al., unpublished) or site-spe-
cifi c models applied to local inventories 
(Mauya et al., 2014). Though the IPCC 
2006 guidelines (Eggleston et al., 2006) 
point towards the advantages of using spe-

cies-specifi c allometric equations. Given 
the absence of species-specifi c allometric 
equations, this study settled for regional 
ones. The allometric equations considered 
in this study were developed for miombo 
woodlands with the most frequently oc-
curring genera, such as Brachystegia, 
Julbernadia, and Cryptosepalum. Even 
though the majority of sample sites were 
in miombo woodlands, other woodland 
types with a diff erent species composition 
were analysed  us ing the same  allometric 

Predictor Estimate p-value Proportion of variance 
explained (%) 

Intercept 1.1652 0.136  – 

Mean annual precipitation 0.0013 < 0.001 65.3 

Silt content topsoil 0.0227 < 0.001 21.7 

Temperature range 0.0130 0.042 8.4 

Coarse fragments topsoil –0.0205 0.046 2.8 

Fire frequency 0.0622 0.002 1.7 

Table 3: Model coeffi cients of the GLM with AGB (t/ha) as response variable (calculated 
based on the allometric equation by Chidumayo [2013]); variable importance calculated via 
hierarchical partitioning is given as explained variance in a percentage. Explained deviance 
of the model is 16.1%.

Figure 4: Visualisation of the predictor variables of the fi nal GLM with AGB according 
to Chidumayo (2013). MAP = mean annual precipitation (mm); temperature range (°C); 
coarse fragments in the topsoil (%); silt content of the topsoil (%); fi re frequency = number 
of fi res in last 15 years.



Fo
re

st
 re

so
ur

ce
s

Bංඈൽංඏൾඋඌංඍඒ  Eർඈඅඈඒ 6    2018 315

equations in the absence of more suitable 
ones. Hence, it would be useful to de-
velop equations for these woodland types 
to match the variability in tree biomass 
across all ecological zones and vegetation 
types. Furthermore, the inherent variabil-
ity in growing conditions within a single 
biome such as miombo woodlands will 
obviously aff ect how well an allomet-
ric model applies to all locations in that 
zone. Within the geographical range of 
the study, there are diff erent conditions in 
terms of climate, soil, and fi re frequency 
(Tab. 1), all factors that aff ect allometry 
and thus the relationship between the in-
dependent variables and biomass.

However, new technologies currently 
still in the experimental stage might off er 
new solutions to estimate biomass on the 
local scale. As such, Strohbach (2018) and 
Knox et al. (2018) utilize unmanned aerial 
vehicles to investigate stand structure and 
height of woodlands. A study by Mathieu et 
al. (2018) makes use of the combination of 
airborne LiDAR data and freely available 
satellite data to calculate maps on woody 
cover on a regional scale. Additionally, 
Kankare et al. (2013) suggested the use 
of stem curve and crown size geometric 
measurements from terrestrial laser scan-
ning data as a basis for allometric models. 

Environmen tal drivers of AGB
On a regional scale, climate has long been 
identifi ed as the main driver of vegeta-
tion patterns, and as such also of biomass. 
Generally, climate as the main driver was 
confi rmed in this study, and AGB showed 
a positive relationship with mean annual 
precipitation and a negative one with 
mean annual temperature. Locally, how-
ever, the observed patterns of AGB devi-
ated from this general fi nding. As such, 
miombo woodlands sampled in Angola re-
ceived higher precipitation (annual mean 
1123 mm) than the miombo woodlands in 
Zambia (annual mean 999 mm), but AGB 
was higher in the latter. This could be at-
tributed in part to higher soil fertility in 
Zambia, represented by higher silt content 
in the topsoil in the GLM (Tab. 3). The 
share of fi ne material in the soil is respon-
sible for nutrient retention, an important 
factor in a region where soils are predomi-
nantly sandy and very nutrient poor. An-
other factor could be higher antropogenic 

used for human impact in this study did 
not turn out to be an important predictor 
variable, however, and did not remain in 
the fi nal model after variable selection. 

This might also explain the high vari-
ability of AGB on the local scale: the 
estimates of AGB per vegetation type 
showed a high MAD, which was almost 
as high as the median. This high spatial 
variability at the local scale makes gener-
alization about drivers of the AGB diffi  -
cult and is responsible for the low model 
performance of the GLM.

Still, it also needs to be pointed out 
that the environmental data used in the 
modelling exercise were derived from 
global datasets and were not measured 
at the site scale by in situ measurements. 
The soil data, regionalized using predic-
tive modelling approaches and various 
environmental data layers as explanatory 
variables, are particularly prone to errors.

Conclu sion

This study provides a contribution to the 
estimates of the above-ground biomass of 
the woodlands in the Zambezian Phytore-
gion, where studies based on in situ data 
on a regional scale are very scarce. The 
most powerful variable explaining the 
spatial pattern of AGB was mean annual 
precipitation. However, models using 
environmental variables failed to fully 
explain the pattern observed in wood-
lands of the region. The reasons are most 
likely twofold. First, there is high local 
variability as a result of environmental 
heterogeneity that is not captured by the 
regional or global data layers used. Sec-
ond, the woodlands are strongly aff ected 
and shaped by anthropogenic activities 
such as shifting cultivation, charcoal pro-
duction, and the (unintended) use of fi re.

To come to a better understanding of 
spatial patterns of AGB in southern Af-
rican woodlands, we reiterate the im-
portance of improving ground-based 
monitoring networks that will feed into 
the calibration and validation of remotely 
sensed data. Robust, standardised net-
works of fi eld monitoring sites to com-
plement global satellite observations are 
still insuffi  cient. Long-term in situ moni-
toring is needed to investigate growth 

pressure on the woodlands, as population 
density is higher in the Angolan part of the 
study area than in the Zambian one (see 
also De Cauwer et al., 2018).

Fire can have a major impact on species 
composition and regeneration of wood-
lands. Generally, a rule of thumb indicates 
that fi re return periods shorter than fi ve 
years hinder trees from reaching mature 
stages that are more resistant to fi re (Bond 
& Keeley, 2005). Thus, it is astonishing 
that the GLM indicated a weak but positive 
relationship between the number of fi res 
and AGB. Maps of spatial and temporal 
patterns of fi re in southern Africa (Röder 
et al., 2018) reveal that fi re frequency does 
not follow a continuous gradient that can 
be explained purely by environmental 
factors. Instead, fi re is controlled by hu-
man management or the lack thereof. As 
such, there is a clear diff erence in fi re fre-
quency among the Baikiaea woodlands. 
This woodland type occurs both in south-
eastern Angola and in northern Namibia. 
In northern Namibia fi re frequency is low 
compared to the areas to the north across 
the Okavango River in Cuando Cubango 
Province in Angola, where fi re frequen-
cies were among the highest in southern 
Africa (Röder et al., 2018).

Because of increased canopy closure, 
miombo woodlands exhibit a higher fi re 
resistance. Fire is used for multiple pur-
poses by humans, however, such as for the 
preparation of fi elds in shifting agricul-
ture. Furthermore, many grasslands of the 
miombo region burn annually (Stellmes 
et al., 2013). Thus, vegetation plots in the 
miombo region situated close to the wood-
land edge can be erroneously identifi ed as 
having a high fi re frequency as a result 
of a mixed pixel problem. In conclusion, 
high fi re frequency and fi re season are not 
suitable variables to explain AGB on a re-
gional scale. As other studies have shown, 
frequent fi res can convert woodlands to 
long-term stable grasslands or shrublands.

This underlines that AGB patterns on 
this regional scale cannot be explained by 
environmental predictors alone. Instead, 
anthropogenic factors (e.g., the use of 
woodlands for shifting cultivation, char-
coal production, or timber extraction) 
have a long-lasting impact on the species 
composition and structure of the wood-
land, and as such on AGB. The index 
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rates to establish sustainable harvesting 
schemes for timber. Furthermore, they 
give insights into the regeneration capac-
ity of the woodlands after clearing for ag-
riculture or charcoal production.
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