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Abstract: The spatial extension of the countries covered by SASSCAL, the diversity of their landscapes, and the range of 
social and ecological processes, constitute a challenge to environmental research. The latter have sometimes needed to focus 
on small test sites for very specifi c questions, or else required data and methods that allowed large area assessments. In either 
situation it is important that the studies are founded on consistent and comparable data. Responding to this requirement, a 
range of products based on operational earth observation satellite systems has been developed in the frame of SASSCAL. 
Here, we introduce the most relevant primary and derived products at coarse (250–500 m MODIS) and medium (30 m 
Landsat) spatial resolution, describe their basic properties, and provide examples of application as an impetus for further 
research. At the same time, alternative sources of data and advances in sensor systems off er high potential in complementing 
information from operational products, or provide further insights into specifi c local questions. We thus briefl y touch upon 
the potential of such systems, including active sensing and/or airborne technologies such as Synthetic Aperture Radar, Light 
Detection and Ranging, use of Unmanned Aerial Vehicles (UAV), and hyperspectral imaging, and introduce studies carried 
under SASSCAL using these systems.

Resumo: A extensão espacial dos países envolvidos com o SASSCAL, a diversidade das suas paisagens e a variedade dos 
processos sociais e ecológicos constituem um desafi o para a pesquisa ambiental. O último aspecto necessitou, por vezes, de 
se focar em pequenos locais de teste para questões muito específi cas, ou requerer dados e métodos que permitiram avaliações 
de grandes áreas. Porém, em qualquer das situações, é importante que os estudos se baseiem numa base de dados consistente 
e comparável. Em resposta a este requisito, e no âmbito do SASSCAL, foi desenvolvida uma gama de produtos com base 
nos sistemas de satélite operacionais de observação da Terra. Aqui, introduzimos os produtos primários e derivados mais 
relevantes em resolução espacial grosseira (250 – 500 m MODIS) e média (30 m Landsat), descrevemos as suas proprie-
dades básicas e oferecemos exemplos de aplicação como um incentivo para posterior investigação. Simultaneamente, fontes 
alternativas de dados e avanços nos sistemas de sensores oferecem um alto potencial na complementação da informação 
de produtos operacionais, ou fornecem uma visão mais aprofundada sobre questões locais específi cas. Assim, abordamos 
resumidamente o potencial de tais sistemas, incluindo tecnologias de detecção activa e/ou sistemas aéreos, tais como Radar 
de Abertura Sintética, tecnologia LIDAR (Light Detection and Ranging), Veículos Aéreos Não Tripulados (UAV) e sistemas 
de imagens hiperespectrais, e introduzimos estudos desenvolvidos no âmbito do SASSCAL que utilizaram estes sistemas.

Introduction

In the face of climate change and im-
minent transformation processes, the 
need to evaluate state indicators of so-
cial-ecological systems or monitor their 
development is more pressing than ever 
(Scholes et al., 2008; Verstraete et al., 

2011). Aside from specifi cally tailored 
case studies, many questions can only 
be tackled at regional, national or even 
continental scales (e.g. reporting for the 
“Reducing Emissions from Deforesta-
tion and Forest Degradation” programme 
of the UNFCCC, Herold et al. (2011a)), 
thus requiring adequate datasets. Recent 

advances in sensor technology allow the 
derivation of more sophisticated envi-
ronmental indicators than ever before. 
Whilst such approaches have been possi-
ble in recent years, they have often been 
limited to specifi c locations due to data 
costs or the need to employ experimental 
sensors. 

Remote sensing-based environmental 
assessment and monitoring – generation of 
operational baseline and enhanced 
experimental products in southern Africa
Achim Röder1*, Marion Stellmes1, 2, David Frantz1,3, and Joachim Hill1

1  Department of Environmental Remote Sensing and Geoinformatics, Faculty of Regional and Environmental 
    Sciences, Trier University, Behringstraße 15, 54286 Trier, Germany 
2  Institute of Geographical Sciences, Remote Sensing and Geoinformatics, Department of Earth Sciences, 
    Freie Universität Berlin, Malteserstraße 74–100, 12249 Berlin, Germany
3  Geomatics Lab, Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

*  Corresponding author: roeder@uni-trier.de



Bංඈൽංඏൾඋඌංඍඒ ๟ Eർඈඅඈ඀ඒ 6    2018 345

La
nd

 co
ve

r d
yn

am
ics

On the other hand, and despite their 
limitations in terms of spectral, geometric 
and radiometric properties, the existence 
of freely accessible long-term remote 
sensing archives, such as those of NOAA-
AVHRR, Landsat or MODIS, allows the 
tracking of environmental processes back 
to the early 1970s and across large areas. 
Recently Hansen et al. (2013) have pro-
vided a global estimation of deforestation 
between 2000 and 2013 based on Landsat 
imagery, and DeFries et al. (2007) have 
suggested a multi-scale framework for es-
timating greenhouse gas emissions from 
deforestation based on diff erent sensor 
systems. In many cases, global, ready-
to-use earth observation products are not 
adequate for specifi c research tasks such 
as time series or spectral analyses, and 
particular requirements emerge in terms 
of quantitative consistency standards and 
data pre-processing. For instance, apply-
ing advanced quantitative interpretation 
or classifi cation techniques to sequences 
of optical data (e.g. Landsat or Senti-
nel-2) often requires these to be quantita-
tively consistent, necessitating correction 
of atmospheric eff ects, variations in sun 
position, infl uences of topography, etc. 
In the context of data with high temporal 
resolution (e.g. 16- or 8-day composite 
MODIS data), often only base products 
(refl ectance, vegetation indices) often 
exist, while more ecologically meaning-
ful data representing seasonal dynamics 
within and across years need to be spe-
cifi cally derived. Given the amount of 
data that can potentially be used, procur-
ing pre-processed datasets for subsequent 
analyses poses considerable demands in 
terms of data volumes and processing ca-
pabilities. 

Many applied users are interested in 
earth observation data but have no man-
date or capability to deal with exten-
sive data pre-processing strategies. For 
this reason, operational data processing 
frameworks may facilitate the use of sat-
ellite data in many fi elds. One example is 
the framework for optical remote sensing 
processing (Framework for Operational 
Radiometric Correction for Environmen-
tal monitoring, FORCE) that has been 
implemented to prepare data products at 
diff erent processing levels. These may be 
utilised in a variety of applications and 

in response to requirements of diff erent 
levels of users, ranging from large-area 
classifi cation of land-use and land-cover 
units, to the detailed analysis of deforest-
ation or forest degradation in a regional 
context. 

In many cases, such products might 
be complemented by additional informa-
tion derived from other sources. First and 
foremost, active systems like Synthetic 
Aperture Radar (SAR) is of interest here, 
with various spaceborne platforms hav-
ing been launched in recent years, includ-
ing Terra-SAR and Sentinel-1. ESA’s 
Sentinel-1 fl eet is the fi rst SAR system 
to operationally provide global data at 
high spatial resolution of 10 by 10 m at 
no cost to the user. Numerous studies 
have demonstrated the potential of using 
radar data as standalone or in combina-
tion with optical data (Joshi et al., 2016). 
For instance, Reiche et al. (2015) have 
demonstrated the potential of improving 
Landsat-based NDVI time series with 
ALOS-PALSAR data to compensate for 
cloudiness and improve time series anal-
ysis. Likewise, Stefanski et al. (2014) 
combined Landsat-TM and ERS2-SAR 
data to signifi cantly increase mapping 
accuracies of land management regimes 
in western Ukraine. 

Besides spaceborne sensors, airborne 
systems off er unique potential in enhanc-
ing operational products or supplying 
specifi c datasets for local applications, 
for instance to provide biophysical and 
structural information on vegetation 
communities at plot level. Airborne sin-
gle pulse or full waveform Light Detec-
tion and Ranging (LiDAR) systems have 
gained increasing attention for ecological 
studies (Lefsky et al., 2002) and in recent 
years there has been a growing number 
of studies of savanna systems (Lucas et 
al., 2011). Armston et al. (2013) directly 
retrieved canopy gap fraction from wave-
form LiDAR, while Lucas et al. (2006) 
demonstrated the use of local-scale air-
borne LiDAR data to calibrate radar-
based biomass models of forest systems 
for larger areas. Airborne hyperspectral 
data are another valuable source of in-
formation, recording optical refl ectance 
information in often more than 100 spec-
tral bands. While such data may serve 
to map fl oristic patterns (Oldeland et 

al., 2010), their integration with active 
systems is particularly promising. Nai-
doo et al. (2012), Cho et al. (2012) and 
Colgan et al. (2012) presented diff erent 
approaches of combining hyperspectral 
and LiDAR data to classify savanna tree 
species. Finally, Unmanned Aerial Vehi-
cles (UAV) provide additional fl exibility 
in data acquisition, since they can be op-
erated at short notice without the need to 
organise fully-fl edged fl ight campaigns. 
At the same time an increasing array of 
sensor systems from multi-spectral to 
hyperspectral and LiDAR sensors have 
become available (Colomina & Molina, 
2104), and even simple multi-spectral 
systems that include near-infrared imag-
ing capabilities can be useful in discrimi-
nating woody species in savanna systems 
(Oldeland et al., 2017). 

Our paper describes the diff erent op-
erational remote sensing processing 
modules developed in the context of the 
SASSCAL initiative, introduces the de-
rived products and refers to example ap-
plications. Further studies using active 
and experimental sensors carried out in 
the frame of the SASSCAL initiative are 
also described. 

Methods

Coarse resolution products
The MODIS platforms Terra and Aqua 
have acquired earth observation data 
since the year 2000 and 2002 respective-
ly, providing imagery of the entire globe 
within 1 to 2 days with a spatial resolution 
of 250  by 250 m to 1 by 1 km, depending 
on the spectral band. The spectral speci-
fi cations of the MODIS sensors allow 
for the derivation of numerous products 
for monitoring land, oceans and the at-
mosphere. The land related products are 
mainly distributed by “The Land Pro-
cesses Distributed Active Archive Cent-
er” (LP DAAC) within the NASA Earth 
Observing System Data and Information 
System (EOSDIS). Within SASSCAL, 
we were specifi cally interested in provid-
ing information on land cover character-
istics as well as the fi re regime covering 
the whole of southern Africa, comprising 
the countries Angola, Zambia, Namibia, 
Botswana, and South Africa.
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Phenology metrics
Information on phenology is an impor-
tant indicator for the characterisation of 
the status and dynamics of land use/cover 
(Andres et al., 1994). It can be reliably 
mapped from many earth observation 
systems, and is commonly associated 
with photosynthetic activity (or “green-
ness”) of vegetation. If such information 
is to be used for monitoring land cover 
dynamics, preferably long time peri-
ods need to be covered (Stellmes et al., 
2013b). This information can be spatially 
provided by earth observation data with a 
high temporal repetition rate as acquired 
from sensors such as MODIS, SPOT-
VEGETATION or NOAA-AVHRR.

To capture the land surface phenology 
(LSP) of the study region we used the 
16-day Vegetation Indices (VI) Dataset 
at 250 m spatial resolution (Huete et al., 
1999). It comprises diff erent information 
layers, which are compiled from daily ob-
servations on a pixel basis from the best 
suitable information for the respective 
16-day period. These layers include spec-
tral vegetation indices (such as NDVI or 
EVI), refl ectance values in diff erent 
bands, and diff erent auxiliary data on im-
age acquisition conditions (e.g. viewing 
angles and observation quality). Impor-
tantly, for every pixel the exact date from 
which the data originated is recorded. 
The complete time series of the Terra and 
the Aqua MODIS sensors (MOD13Q1 
and MYD13Q1 products, respectively) 
was incorporated for the period from 
2000/2001 to 2012/2013. We used the 
Enhanced Vegetation Index (EVI) as a 
robust proxy for biomass development 
that reduces the impact of atmospheric 
infl uences and decouples the vegetation 
canopy signal from its background (i.e. 
soil and bedrock) signal based on refl ec-
tance in the blue, red and near-infrared 
bands. The day-of-composite informa-
tion (i.e. the exact day from which a pixel 
in the composite originates) was used as 
the time axis and the Usefulness Index 
(Huete et al., 1999), an indication of the 
respective pixel’s assumed quality (con-
sidering aerosol quantity, atmospheric 
correction conditions, cloud cover, shad-
ow and sun-target-viewing geometry) 
was used to weight the data points during 
the fi tting procedure.

MODIS LSP metrics were obtained 
by applying the Spline analysis of Time 
Series (SpliTS) algorithm (Mader, 2012). 
SpliTS is a C++ computer code for fi tting 
spline models to remotely-sensed time 
series and to derive land surface phenol-
ogy. It is a data-driven method that can 
handle non-equidistant time series con-
sidering the actual acquisition date. A set 
of 20 metrics is derived for each pixel, 
including date-specifi c parameters, and 
integral information about the growing 
seasons, amplitudes, etc., as illustrated in 
Figure 1 and summarised in Table 1.

Fire-related products
Changing boundary conditions, for ex-
ample decreasing rainfall and/or land-
use change related to population growth, 
may have major implications for the fi re 
regime and in consequence for ecosys-
tem functioning. Therefore, it is crucial 
to understand and describe all compo-
nents of the prevailing fi re regime. The 
key parameters that describe a fi re regime 
are fi re type, frequency, seasonality, in-
tensity (largely determined by fuel load), 
spread and heat yield (Graz, 2003; Kee-
ley, 2009).

Figure 1: Three years 
of a MODIS Enhanced 
Vegetation Index (EVI) 
time series (thin line) 
and fi tted smooth B-
spline (thick line) (from 
Mader (2012); further 
information in the text).

Index Description  Ecological meaning 

a Day of year (DOY) and modelled value for 
early minimum of season (MOS) 

 Minimum greenness at beginning of the 
vegetation cycle and its day of occurrence 

b DOY and modelled value for peak of season 
(POS) 

 Maximum greenness within the  vegetation 
cycle and its day of occurrence 

c DOY and modelled value for late minimum of 
season (MOS) 

 Minimum greenness at end of vegetation cycle 
and its day of occurrence 

d Duration (days) between successive minima  Length of vegetation cycle 

e Amplitude of Enhanced Vegetation Index 
(EVI) value as difference between peak and 
latent value (f) 

 Measure of the strength of the annual variability 
of greenness 

f Latent EVI value as average of the early and 
late minimum values 

 Measure related to the standing biomass 

g Integral between two successive minima  Measure related to the variable biomass 

h Latent integral  Measure related to the standing (invariant) 
biomass 

g+h Total integral defined as the sum of g and h  Measure related to the overall biomass within a 
vegetation cycle 

i Beginning (day of year) of greenness and 
modelled value for start of greenness 

 Metric related to the start of the vegetation 
period linked to a percent change in greenness 
and its day of occurrence 

k End (day of year) of greenness and modelled 
value for end of greenness 

 Metric related to the end of the vegetation 
period linked to a percent change in greenness 
and its day of occurrence 

m Duration of greenness defined as time span 
in days between i and k  

 Metric related to the length of the vegetation 
period as defined by the beginning and end of 
the vegetation period 

o Greenness integral defined by i and k  Metric related to the overall greenness/biomass 
generated within the vegetation period 

 Rate of green-up defined as the slope of a 
line connecting the point of the onset of 
greenness and the annual peak value (not 
shown in Figure 1) 

 Metric related to the rate of greening up 

 Rate of senescence, which is the (absolute) 
slope of the line connecting the annual peak 
and the point of end of greenness (not 
shown in Figure 1) 

 Metric related to the rate of senescence 

 

Table 1: Overview of parameters derived using the spline algorithm.
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angle and the spectral radiance from an 
inclined surface. As a further important 
element, a correction of bidirectional ef-
fects using global parameters supplied by 
(Roy et al., 2016) was implemented.

Finally, the resulting dataset is pro-
jected to tiles of 1000 x 1000 pixels (or 
30 km x 30 km) using bilinear resampling 
and second-order polynomial warping to 
a Lambert azimuthal equal area projec-
tion centred at the KAZA Transfrontier 
Conservation Area. For technical details 
of any processing step, refer to Frantz 
et al. (Frantz et al., 2015c; Frantz et al., 
2015a; Frantz et al., 2016a).

Phenology fusion
As has already been outlined in the 
Methods section of this chapter, satellite-
derived land surface phenology (LSP) is 
an important source of information and 
may be utilised both to stratify further 
analyses and to serve as an important in-
put component for land cover mapping, 
change detection and other processes 
(Stellmes et al., 2013b). The derivation 
of phenology metrics is most commonly 
based on images with a high temporal 
resolution, such as NOAA-AVHRR or 
MODIS, and using a range of meth-
ods, such as Fourier transform, wavelet 
transform or spline fi tting (Jonsson & 
Eklundh, 2002). As a result, phenological 
metrics may be derived representing the 
long-term average situation or at yearly 
intervals, the latter also supporting time 
series analysis of phenological indicators 
(Stellmes et al., 2013b). Although many 
applications would benefi t from the ex-
istence of phenology at higher resolu-
tions (e.g. 30 m x 30 m corresponding 
to Landsat pixel size) their derivation 
is often complicated by limitations in 
data availability, which is particularly 
relevant in regions with distinct dry/wet 
season periods, such as those in many 
south-African countries. This shortcom-
ing could be overcome by implementing 
image fusion algorithms such as StarFM 
(Gao et al., 2006) to simulate images with 
high spatial and temporal resolution, and 
use these to derive phenology metrics. 
However, this entails a massive overhead 
in terms of processing eff orts and capaci-
ties required and may still not be feasible 
due to lack of suffi  cient image  density (in 

rates the specifi c characteristics of the 
Thematic Mapper, Enhanced Thematic 
Mapper and Operative Land Imager sen-
sors and adopts a tiling structure independ-
ent of the frames downloaded from Land-
sat’s World Reference System (WRS-2) 
(Frantz et al., 2016a). We download all 
L1T images with less than 70% cloud 
cover. This processing level includes ra-
diometric calibration and ground control 
point-based orthorectifi cation including a 
digital elevation model to account for re-
lief displacement. Subsequently, a modi-
fi ed version of the FMask algorithm (Zhu 
& Woodcock, 2012) is utilised to detect 
clouds and cloud shadows for every im-
age. It has been modifi ed for enhanced 
performance in savanna ecosystems with 
their co-occurrence of surfaces of largely 
diff erent colour and surface tempera-
ture (Frantz et al., 2015a). The core of 
the processing chain is based upon the 
formulation of the radiative transfer ini-
tially introduced by Tanré et al. (1990), 
which considers the impact of gases and 
aerosols on absorption, direct and diff use 
scattering, the sun-sensor-surface con-
fi guration and environmental eff ects, and 
models these processes. To facilitate op-
erational implementation, the algorithm 
is parameterised with consideration of 
aerosol optical thickness and water va-
pour transmission factors. The latter are 
derived from concurrent MODIS water 
vapour data (MOD05 and MYD05 prod-
ucts, MOD03 and MYD03 geolocation 
tables), or a fallback model based on sea-
sonal date and location for Landsat im-
ages acquired prior to the MODIS era or 
where no appropriate MODIS dataset is 
available. Aerosol optical depth (AOD) is 
estimated over dark targets, making use 
of a precompiled dark object database. 
This holds pixels that have been identi-
fi ed as persistent dark features in a fi rst 
iteration of all available images. Again, 
a fallback model based on seasonal date 
and location is employed where an im-
age-based estimation is not possible. As 
an advancement over most large-area 
data production systems, a modifi ed C-
based topography-correction is included 
in the radiative transfer model, where 
the C factor is derived from a slope- and 
surface-class-specifi c linear regression 
between the cosine of the illumination 

We characterised the fi re regime based 
on an extensive multi-scale compilation 
of the MODIS products “Active Fire” 
(AF) and “Burned Area” (BA) covering 
the period 2000 to 2015 and providing 
data with a spatial resolution of 1 km 
and 500 m, respectively. Based on the 
methodology proposed by Stellmes et al. 
(2013e), the integrated analysis of these 
mutually exclusive datasets allowed for 
a comprehensive spatio-temporal char-
acterisation of important descriptors of 
the large-scale fi re regime such as the 
fi re frequency, seasonality and intensity, 
among others.

Moreover, we developed a novel object-
based methodology that extracts valuable 
information about fi re dynamics from BA 
data for every single fi re detected and pro-
vides highly valuable information about 
fi re dynamics that have not been spatially 
available up to now (Frantz et al., 2016e). 
Based on image segmentation of BA data 
and the analysis of movement trajectories 
between dates, detailed information for 
every single fi re regarding timing and lo-
cation of its ignition is recorded, as well 
as detailed directional multi-temporal 
spread information (i.e. the movement 
direction of the fi re front and its speed). 
This information can in turn be integrated 
to derive large-scale information for the 
entire study area and to improve under-
standing of the overall fi re regime.

Medium resolution products
Getting access to all recorded Landsat im-
ages, thanks to the opening of the archive 
(Woodcock et al., 2008), has provided 
unprecedented opportunities for long-
term monitoring of a wide range of land 
surface indicators (Wulder et al., 2008; 
Danaher et al., 2010). In particular, it was 
possible to move from the analysis of a 
small set of images (Röder et al., 2008) 
to coverage of large areas (Griffi  ths et al., 
2013a), and approaches utilising the full 
temporal depth of the Landsat archive 
(Kennedy et al., 2010). Yet, realising this 
potential poses challenges in terms of 
automated data pre-processing to ensure 
quantitative consistency of data.

Landsat archive pre-processing
We developed a pre-processing frame-
work for Landsat imagery that incorpo-
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 particular  during the wet  season) and high 
landscape heterogeneity, which has been 
shown to reduce fusion quality. To over-
come this, we have developed a method 
(ImproPhe) to predict selected phenol-
ogy parameters at medium (Landsat) 
resolution (MR) directly from coarse res-
olution (CR) phenology (outlined in the 
Methods section). The method is based 
on the assumption that a few MR tempo-
ral observations are suffi  cient to separate 
image regions with similar phenology di-
rectly and to high precision, even if their 
temporal resolution would not allow the 
derivation of land surface phenology de-
scriptors in a classic procedure (Frantz et 
al., 2016g). Accordingly, we relate the ac-
curate CR LSP to the corresponding MR 
spatial features by exploiting their spatio-
temporal patterns, which is similar to the 
StarFM approach (Gao et al., 2006). We 
defi ne several proxies at both resolutions 
that defi ne the fi nal neighbouring pixel’s 
weight. These proxies include the spec-
tral distance, the heterogeneity of the MR 
pixels and the heterogeneity of CR pixels 
within the analysis window. To account 
for diff erent units and ranges of input 
data and to increase the contrast between 
the best and worst weights, the retrieved 
neighbour weights are rescaled through 
a sigmoidal transfer function (Frantz et 
al., 2016g).  

Phenology-adaptive image com-
positing
Considering the scale of many urgent 
environmental questions, and the need 
to cover large areas to meet reporting re-
quirements such as those of the REDD+ 
programme (Herold et al., 2011b), specifi c 
challenges emerge concerning the appro-
priate input satellite products. In particu-
lar, cloud cover and processing capabili-
ties may be obstacles to such large-area, 
wall-to-wall applications. With the avail-
ability of large data archives, mosaicking 
and compositing methods have emerged 
that can help to mitigate both constraints. 
While mosaicking commonly joins indi-
vidual images, compositing is carried out 
at the pixel level. Numerous techniques 
have been developed, which are often 
based on the optimisation of band or in-
dex statistics (Flood et al., 2013) and aim 
at providing regularly spaced time se-

ries. Where adverse climatic settings and 
non-systematic acquisition plans prevent 
gap-free annual coverage, compositing 
approaches may consider observations 
from various years, which have fi rst been 
combined with additional spectral crite-
ria in a parametric weighting scheme by 
Griffi  ths et al. (2013b). One key aspect 
in such compositing schemes is the trea-
tise of phenology, since the same type of 
vegetation community may be in diff er-
ent growing stages at one acquisition date 
due to diff erent local climatic conditions. 
We therefore made use of the processed 
Landsat archive (outlined in the Meth-
ods section) and the phenology fusion 
approach (outlined in the Methods sec-
tion) to develop a parametric weighting 
scheme that allows the generation of pix-
el-based, phenology-adaptive compos-
ites of Landsat surface refl ectance data, 
i.e. the creation of “synthetic” images 
with pixels assembled from a large body 
of satellite images (Frantz et al., 2017). 
This technique employs a parametric 
weighting scheme with full consideration 
of annual land surface phenology (LSP) 
at the pixel scale to generate phenologi-
cally coherent composites. The technique 
may be applied to any gridded earth ob-
servation data archive and, in general, six 
metrics are used to evaluate the suitabil-
ity of each pixel in the archive.

The target acquisition day (Day of 
Year, DOY) is based on phenology met-
rics and calculated for each pixel based 
on the target phenological state. Peak of 
Season (POS), End of Season (EOS), and 
Minimum of Season (MOS) are used to 
fi t Gaussian or logistic S-curves, from 
which the scoring function for the respec-
tive target season is derived.

For each composite, a target year for 
the compositing is set. Since it is often not 
possible to fi nd a phenologically suitable 
pixel in that particular year, a number of 
bracketing years are defi ned, and an ad-
ditional factor accounts for the trade-off  
between phenologically suitable date and 
target year to yield the respective scoring 
value. The cloud distance score makes use 
of the cloud and cloud shadow mask re-
sulting from the pre-processing scheme, 
and devaluates pixels that are potentially 
aff ected. In addition, the Haze Optimised 
Transformation (HOT, Zhu & Woodcock 

2012) is additionally used as input to ac-
count for potential haze contamination of 
pixels that were not fl agged as cloud or 
cloud shadow. A correlation score is in-
troduced that evaluates the stability of a 
given pixel by relating it to its spectral 
behaviour over time, thus minimising the 
impact of noise in the data and effi  ciently 
preventing artefacts from being consid-
ered for the compositing. Finally, a view 
angle score is defi ned to favour near nadir 
observations to those at larger view an-
gles. These scores are then calculated for 
every candidate pixel and at every posi-
tion in the desired compositing region to 
identify the most suitable pixel. 

In addition to the actual refl ectance 
composite, a number of compositing met-
rics are computed that provide further 
information about the composite and can 
be used directly for diff erent applications. 
These metrics include spectral average, 
standard deviation, kurtosis and skewness. 
Layers for each individual score and the 
overall score of the fi nally selected pixel 
are also generated (Frantz et al., 2017).

Results

Modis
Overall, 20 phenology metrics were de-
rived for southern Africa on an annual 
basis (due to the growing season of the 
southern hemisphere starting in July) 
covering the period from 2000/2001 to 
2012/2013. 

Figure 2 depicts four phenological met-
rics that were derived for the SASSCAL 
countries. These are the means of: (i) the 
total integral, which can be related to the 
overall biomass; (ii) the latent integral as-
sociated with the standing biomass; (iii) 
the green integral, which is linked to the 
variable biomass within the vegetation 
period; and (iv) the day of year (DOY) 
of the start of greening. All metrics show 
that the study area is characterised by 
strong phenological gradients that can 
be related to the major functional vegeta-
tion types, to a large degree determined 
by climatological gradients. Whereas the 
subtropical Miombo belt in Angola and 
Zambia is characterised by a high total 
and latent integral, the  Namib, which 
typifi es the dry extreme of the study 
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area, is characterised by overall low veg-
etation cover. The phenology metrics are 
therefore capable of identifying the ma-
jor functional vegetation types (Stellmes 
et al., 2013e) and might furthermore be 
utilised for large-area monitoring of land 
cover dynamics as well as for establish-
ing relationships to climatic and anthro-
pogenic drivers.

Fire related parameters
Based on the methodologies of Stellmes 
et al. (2013e) and Frantz et al. (2016e) a 
variety of fi re regime related parameters 
were derived for the period covering 
2000 to 2015. These parameters com-
prise established variables such as fi re 
frequency, seasonality and intensity but 
also enhanced parameters such as the lo-
calisation of fi re ignition points and fi re 
spread rate. Figure 3 illustrates the capa-
bility of the used methodologies to pro-
vide important fi re related information. 
The examples reveal the diversity of the 
fi re regimes prevalent in the SASSCAL 
area, where fi re frequency is high in 
grassland dominated ecosystems. These 
areas are therefore also characterised by 
high fi re return intervals that are often 
too short to allow for the establishment 
of tree saplings. The fi re seasonality is, in 
general terms, mainly characterised by a 
north—south gradient from early fi res in 
June/July in northern Angola (red colour, 
Fig. 3) to later fi res in the southern part 
(green and blue colours) that are often 
related to higher fi re intensities.

Landsat
Landsat archive pre-processing
Covering the countries of Angola, Bot-
swana, Namibia, Zambia, and Zimba-
bwe, we processed a total of 57,371 L1T 
images covering the period from 1984 
to 2014, which corresponds to a surface 
area of 3.7 M km2, 194 Landsat WRS-2 
frames, 4524 tiles, 1,912,733 tiled data-
sets, and a total size of ~28 TB (Figure 4).

Figure 2: Remotely-sensed characterisation of the fi re regimes of southern Africa. 
Number of years with fi re (upper left), fi re seasonality (upper right), number of fi re events 
with an interval of less than fi ve years (lower left) and number of ignition points within the 
period 2000 to 2015 (lower right).

Figure 3: Mean total integral corresponding to 
total biomass (upper left), mean latent integral 
corresponding to standing biomass (upper 
right), mean green integral corresponding to 
variable biomass during the growing season 
(lower left) and day of year (DOY) of the start of 
greening for the observation period 2000/2001 
to 2012/2013 (lower right).
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Since it is not feasible to carry out ground-
based validation of refl ectance values 
derived from large-area processing 
frameworks, we evaluated the spectral 

consistency of the results by making use 
of the along-path (i.e. consecutive rows) 
and across-path (i.e. neighbouring paths) 
overlap regions resulting from the image 

acquisition paths of Landsat data. We ob-
served variations in the order of ±2.5% 
refl ectance for 98.9% of all redundant 
image pairs. Furthermore, retrieved AOD 
estimates were compared with Aeronet 
stations located inside our project area 
with high coeffi  cients of determination 
for all covered bands of the visible and 
near-infrared region. Uncertainty of wa-
ter vapour absorption was assessed, and 
the robustness of the approach confi rmed, 
through a sensitivity study over the Eto-
sha pan, comparing values derived from 
the water vapour database with those de-
rived from the MODIS products (Frantz 
et al. 2016a, b). The performance of the 
topography correction was evaluated by 
a relative analysis of NIR refl ectance 
in diff erent topographic aspect classes 
against a Minnaert-based correction and 
no correction, and our approach general-
ly outperformed the other options (Frantz 
et al., 2015c; Frantz et al., 2016a).

All resulting images are stored in 
the gridded structure described before, 
where every tile contains all corrected 
refl ectance images and the correspond-
ing distances to the next cloud and cloud 
shadow. The structure is organised for 
easy data access, such that secondary 
indicators (e.g. vegetation indices) can 
be quickly calculated and stored as ad-
ditional layers for further analysis.

Phenology fusion
We used MODIS-scale phenology as 
described before to parameterise the fu-
sion algorithm. We evaluated the valid-
ity of our approach through a sensitivity 
study based on simulated data, which 
confi rmed the performance of the dif-
ferent kernel-derived metrics (Frantz et 
al., 2016g). We then predicted the POS, 
EOS, MOS, and SOS (Start of Season) 
parameters for the 12-year period from 
2001 to 2012 at Landsat spatial resolu-
tion for the entire study area and with a 
kernel size of 200 pixels. Figure 5 dis-
plays the prediction results as well as the 
input from the CR LSP.

Figure 5 shows the area around the 
city of Mumbué (Angola) characterised 
by the typical landscape elements in 
the study area. Whereas the valleys are 
dominated by grasslands, the summits 
are covered by dense Miombo forests, 

Figure 4: Number of processed Landsat images per tile. Redundant overlaps from the 
same path are excluded, whilst overlaps from neighbouring paths are visible as a striping 
pattern.

Figure 5: False colour composites of the Total Integral, Latent Integral and Green Integral in 
2013. MODIS (above left), fusion result using the Improphe code (above right), and Land-
sat-8 image from May 2013 (below left).
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Discussion

This chapter introduced the main remote 
sensing based primary and secondary 
geospatial products that were developed 
in the context of SASSCAL. With their 
unique geometric, spectral and temporal 
characteristics, they allow a variety of 
questions related to environmental moni-
toring and modelling to be addressed, ei-
ther by using the primary (spectral) data, 
or by utilising the derived products such 
as fi re metrics, phenology descriptors or 
refl ectance composites.

For instance, Stellmes et al. (2013a) 
have employed the derived phenology 
metrics at coarse scale to provide a map 
of major vegetation types for the Oka-
vango Basin, Udelhoven et al. (2015) 
have analysed the infl uence of rainfall 
on vegetation trends using distributed lag 

wet season, aff ect the quality of the com-
posites produced, with SLC-off  patterns 
related to Landsat-7 ETM+ being visible 
particularly in POS-composites. In gen-
eral, the large diff erence between select-
ing individually tailored DOYs for each 
pixel, as opposed to defi ning a general 
DOY, was confi rmed by evaluating the 
eff ect along altitudinal gradients. Con-
sequently, selection of dynamic or static 
parameterisation of phenology in the 
compositing procedure requires careful 
consideration of the intended task. For 
instance, static parameterisation might 
be benefi cial for crop type discrimina-
tion (Van Niel & McVicar, 2004), and 
tree type identifi cation in areas with alti-
tudinal gradients are expected to benefi t 
from the phenological de-phasing asso-
ciated with a dynamic parameterisation 
(Stoff els et al., 2015).

which are cleared for shifting cultivation 
purposes. The fused dataset substantially 
refi nes the spatial resolution of the LSP 
metrics and allows the better delineation 
of the land cover classes of the heteroge-
neous area compared to the MODIS LSP, 
while avoiding problems caused by data 
gaps when deriving LSP directly from 
Landsat time series. The grasslands are 
characterised by a high seasonal biomass 
(violet colour), the Miombo forests by 
high standing biomass (yellowish col-
our), whilst vegetation free areas show 
as dark blue colours. Arable land is quite 
diverse depending on whether the fi elds 
are in use or abandoned, but biomass 
amounts tend to be rather low compared 
to the natural vegetation cover. In gener-
al, object boundaries are well defi ned as 
shown in the agricultural areas, and even 
features that are barely discernible in the 
CR data, if at all, were reconstructed. 
Consequently, it is possible to predict at 
MR any phenological predictor existing 
at CR. The prediction quality is strongly 
dependent on the size of the analysis ker-
nel, so the trade-off  with processing time 
needs to be considered.

Phenology-adaptive image com-
positing
We calculated diff erent seasonal compos-
ites for varying target dates and years. 
Where no distinct yearly phenological 
cycles could be calculated (i.e. in the 
pre-MODIS era), a long-term average 
phenology was used instead. Figure 6 de-
picts a composite showing the countries 
of Angola, Botswana, Namibia, Zambia, 
and Zimbabwe. 

The image shown here is a cloud-free, 
seamless Landsat representation of the 
full area with a composite size of 91000 x 
82000 pixels and a total image size of ap-
proximately 80 GB. Roughly 208 M ob-
servations (i.e. pixels) were considered in 
the procedure; for ease of data handling, 
composites are commonly produced for 
smaller areas.

While cross-comparisons with com-
posites derived from MODIS refl ectance 
data underline the robustness of the ap-
proach, reduced data availability be-
tween the termination of Landsat-5 and 
the operational phase of Landsat-8, as 
well as enhanced cloudiness during the 

Figure 6: End-of-season composite of topography-corrected Landsat surface refl ectance 
(RGB = Near Infrared – Short Wave Infrared – Red). Target year was 2008 ± 2 years. 
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providing Landsat and MODIS data. Two 
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ly helped improve the manuscript. The 
FORCE processing framework is avail-
able for download from www.uni-trier.
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and utilisation of its products, diff erent 
complementary studies and experimental 
case studies are presented in this book. 
Making synergetic use of ALOS/PAL-
SAR radar data with a range of LiDAR 
fl ight transects, Mathieu et al. (2018) 
introduce a woody cover dataset for 
South Africa and highlight the potential 
of woody cover monitoring for diff erent 
test areas in south-western Africa. Stroh-
bach (2018) and Knox et al. (2018) dem-
onstrate the potential of UAV imagery 
to map ecosystem characteristics in Na-
mibian woodland and rangeland systems 
based on vegetation indices and derived 
three-dimensional features, respectively. 

In summary, remote sensing tech-
niques have successfully contributed to 
addressing a plethora of environmen-
tal and societal questions, ranging from 
large area, wall-to-wall assessments to 
local and regional case studies, and make 
use of the full range of observation sys-
tems available today.

These observation and mapping ca-
pabilities can be expected to expand 
further with the range of upcoming sys-
tems. Since February 2016, Sentinel-3A 
provides complementary information 
to the MODIS system while Sentinel-1 
radar imagery may be able to supply ad-
ditional perspectives not yet covered by 
optical systems, such that a long-term 
perspective for large-area monitoring is 
ensured. As such, diff erent levels of detail 
may be addressed, with novel very high 
resolution systems commonly operated 
by commercial companies (e.g. the dove 
suite of sensors launched by Planet Inc. or 
the Worldview satellites by Digitalglobe 
Inc.) or sensors mounted on unmanned 
aerial vehicles (UAV) being able to sup-
ply the crucial element to link ground-ob-
servations to the large-area perspective.
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 models, and Revermann et al. (2016) have 
successfully linked phenology informa-
tion to a vegetation database to model 
fl oral diversity. The medium resolution 
Landsat database has been employed to 
analyse conversion dynamics in a cross-
border study in northern Namibia and 
southern Angola using iterative spectral 
mixture analysis and support vector clas-
sifi cation (Röder et al., 2015), and in dif-
ferent analyses in central Angola using 
temporal segmentation of time series 
derived indicators (e.g. Normalized Burn 
Ratio, NBR; Disturbance Index, DI). The 
latter studies have identifi ed patterns of 
conversion to smallholder agriculture 
(Schneibel et al., 2016) and analysed 
subtle changes within forests to identify 
processes of forest degradation (Schnei-
bel et al., 2018), for instance caused by 
selective logging or charcoal production, 
and to identify underlying causes of de-
forestation (Parduhn & Frantz, 2018). De 
Blécourt et al. (2018) evaluated land-use 
change processes in smallholder-dom-
inated systems in Zambia and Angola 
based on multi-temporal Landsat data-
sets. Since fi res are a major component 
in any of these systems and cause major 
eff ects in spectral image properties, the 
fi re products are, besides their relevance 
in ecological studies, important explana-
tory factors to understand spatial patterns 
derived from satellite imagery. 

The combined use of long-term ar-
chives of coarse and medium resolution 
satellite data off ers unique opportuni-
ties to address questions ranging from 
locally-adapted, specifi c case studies, to 
wall-to-wall approaches required for na-
tional reporting. At present, new sensors 
are becoming available that may be used 
to complement the archives introduced 
here, such as the suite of Sentinel sys-
tems. Our radiometric processing scheme 
has already been successfully tested with 
Sentinel-2A data in central European en-
vironments, and incorporation of these 
data will further enhance temporal revisit 
capabilities. Ideally, the processing can 
be realised in near-real-time, thus pav-
ing the way for the implementation of 
short-term early warning systems (Zhu 
& Woodcock, 2014). 

Complementing the development of 
an operational processing framework 
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